blob: 00ced4ebf61415a1d320d3556c7a6f3d76719b02 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
import numpy as np
import pandas as pd
import os
import tsfile as ts
# test writing data
data_dir = os.path.join(os.path.dirname(__file__), "test.tsfile")
DEVICE_NAME = "test_table"
# 1000 rows data
time = np.arange(1, 1001, dtype=np.int64)
level = np.linspace(2000, 3000, num=1000, dtype=np.float32)
num = np.arange(10000, 11000, dtype=np.int64)
df = pd.DataFrame({"Time": time, "level": level, "num": num})
if os.path.exists(data_dir):
os.remove(data_dir)
ts.write_tsfile(data_dir, DEVICE_NAME, df)
# read data we already wrote
# with 20 chunksize
tsfile_ret = ts.read_tsfile(data_dir, DEVICE_NAME, ["level", "num"], chunksize=20)
print(tsfile_ret.shape)
# with 100 chunksize
tsfile_ret = ts.read_tsfile(data_dir, DEVICE_NAME, ["level", "num"], chunksize=100)
print(tsfile_ret.shape)
# get all data
tsfile_ret = ts.read_tsfile(data_dir, DEVICE_NAME, ["level", "num"])
print(tsfile_ret.shape)
# with iterator
with ts.read_tsfile(
data_dir, DEVICE_NAME, ["level", "num"], iterator=True, chunksize=100
) as reader:
for chunk in reader:
print(chunk.shape)
# with time scale and chunksize
tsfile_ret = ts.read_tsfile(
data_dir, DEVICE_NAME, ["level"], start_time=50, end_time=100, chunksize=10
)
print(tsfile_ret.shape)
# with time scale
tsfile_ret = ts.read_tsfile(data_dir, DEVICE_NAME, ["num"], start_time=50, end_time=100)
print(tsfile_ret.shape)
# with time scale, iterator and chunksize
with ts.read_tsfile(
data_dir,
DEVICE_NAME,
["level", "num"],
iterator=True,
start_time=100,
end_time=500,
chunksize=100,
) as reader:
for chunk in reader:
print(chunk.shape)