| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| # |
| import os |
| from datetime import date |
| |
| import numpy as np |
| import pandas as pd |
| import pytest |
| |
| from tsfile import to_dataframe, TsFileReader, ColumnCategory, TIME_COLUMN |
| from tsfile.utils import dataframe_to_tsfile |
| |
| |
| def convert_to_nullable_types(df): |
| df = df.copy() |
| for col in df.columns: |
| dtype = df[col].dtype |
| if dtype == 'int64': |
| df[col] = df[col].astype('Int64') |
| elif dtype == 'int32': |
| df[col] = df[col].astype('Int32') |
| elif dtype == 'float64': |
| df[col] = df[col].astype('Float64') |
| elif dtype == 'float32': |
| df[col] = df[col].astype('Float32') |
| elif dtype == 'bool': |
| df[col] = df[col].astype('boolean') |
| return df |
| |
| |
| def test_dataframe_to_tsfile_basic(): |
| tsfile_path = "test_dataframe_to_tsfile_basic.tsfile" |
| try: |
| if os.path.exists(tsfile_path): |
| os.remove(tsfile_path) |
| |
| df = pd.DataFrame({ |
| 'time': [i for i in range(100)], |
| 'device': [f"device{i}" for i in range(100)], |
| 'value': [i * 1.5 for i in range(100)], |
| 'value2': [i * 10 for i in range(100)] |
| }) |
| |
| dataframe_to_tsfile(df, tsfile_path, table_name="test_table") |
| |
| df_read = to_dataframe(tsfile_path, table_name="test_table") |
| df_read = df_read.sort_values('time').reset_index(drop=True) |
| df_sorted = convert_to_nullable_types(df.sort_values('time').reset_index(drop=True)) |
| |
| assert df_read.shape == (100, 4) |
| assert df_read["time"].equals(df_sorted["time"]) |
| assert df_read["device"].equals(df_sorted["device"]) |
| assert df_read["value"].equals(df_sorted["value"]) |
| assert df_read["value2"].equals(df_sorted["value2"]) |
| finally: |
| if os.path.exists(tsfile_path): |
| os.remove(tsfile_path) |
| |
| |
| def test_dataframe_to_tsfile_default_table_name(): |
| tsfile_path = "test_dataframe_to_tsfile_default.tsfile" |
| try: |
| if os.path.exists(tsfile_path): |
| os.remove(tsfile_path) |
| |
| df = pd.DataFrame({'time': [0, 1], 'value': [1.0, 2.0]}) |
| dataframe_to_tsfile(df, tsfile_path) |
| |
| df_read = to_dataframe(tsfile_path, table_name="default_table") |
| assert len(df_read) == 2 |
| finally: |
| if os.path.exists(tsfile_path): |
| os.remove(tsfile_path) |
| |
| |
| def test_dataframe_to_tsfile_with_index(): |
| tsfile_path = "test_dataframe_to_tsfile_index.tsfile" |
| try: |
| if os.path.exists(tsfile_path): |
| os.remove(tsfile_path) |
| |
| df = pd.DataFrame({ |
| 'device': [f"device{i}" for i in range(30)], |
| 'value': [i * 2.0 for i in range(30)] |
| }) |
| df.index = [i * 100 for i in range(30)] |
| dataframe_to_tsfile(df, tsfile_path, table_name="test_table") |
| |
| df_read = to_dataframe(tsfile_path, table_name="test_table") |
| df_read = df_read.sort_values('time').reset_index(drop=True) |
| time_expected = pd.Series(df.index.values, dtype='Int64') |
| assert df_read.shape == (30, 3) |
| assert df_read["time"].equals(time_expected) |
| |
| with TsFileReader(tsfile_path) as reader: |
| table_schema = reader.get_table_schema("test_table") |
| device_col = table_schema.get_column("device") |
| assert device_col is not None |
| assert device_col.get_category() == ColumnCategory.FIELD |
| finally: |
| if os.path.exists(tsfile_path): |
| os.remove(tsfile_path) |
| |
| |
| def test_dataframe_to_tsfile_custom_time_column(): |
| tsfile_path = "test_dataframe_to_tsfile_custom_time.tsfile" |
| try: |
| if os.path.exists(tsfile_path): |
| os.remove(tsfile_path) |
| |
| df = pd.DataFrame({ |
| 'timestamp': [i for i in range(30)], |
| 'device': [f"device{i}" for i in range(30)], |
| 'value': [i * 3.0 for i in range(30)] |
| }) |
| |
| dataframe_to_tsfile(df, tsfile_path, table_name="test_table", time_column="timestamp") |
| |
| df_read = to_dataframe(tsfile_path, table_name="test_table") |
| df_read = df_read.sort_values("timestamp").reset_index(drop=True) |
| df_sorted = convert_to_nullable_types(df.sort_values('timestamp').reset_index(drop=True)) |
| |
| assert df_read.shape == (30, 3) |
| assert df_read["timestamp"].equals(df_sorted["timestamp"]) |
| assert df_read["device"].equals(df_sorted["device"]) |
| assert df_read["value"].equals(df_sorted["value"]) |
| finally: |
| if os.path.exists(tsfile_path): |
| os.remove(tsfile_path) |
| |
| |
| def test_dataframe_to_tsfile_case_insensitive_time(): |
| tsfile_path = "test_dataframe_to_tsfile_case_time.tsfile" |
| try: |
| if os.path.exists(tsfile_path): |
| os.remove(tsfile_path) |
| |
| df = pd.DataFrame({ |
| 'Time': [i for i in range(20)], |
| 'value': [i * 2.0 for i in range(20)] |
| }) |
| |
| dataframe_to_tsfile(df, tsfile_path, table_name="test_table") |
| |
| df_read = to_dataframe(tsfile_path, table_name="test_table") |
| assert df_read.shape == (20, 2) |
| assert df_read["time"].equals(pd.Series([i for i in range(20)], dtype='Int64')) |
| finally: |
| if os.path.exists(tsfile_path): |
| os.remove(tsfile_path) |
| |
| |
| def test_dataframe_to_tsfile_with_tag_columns(): |
| tsfile_path = "test_dataframe_to_tsfile_tags.tsfile" |
| try: |
| if os.path.exists(tsfile_path): |
| os.remove(tsfile_path) |
| |
| df = pd.DataFrame({ |
| 'time': [i for i in range(20)], |
| 'device': [f"device{i}" for i in range(20)], |
| 'location': [f"loc{i % 5}" for i in range(20)], |
| 'value': [i * 1.5 for i in range(20)] |
| }) |
| |
| dataframe_to_tsfile(df, tsfile_path, table_name="test_table", tag_column=["device", "location"]) |
| |
| df_read = to_dataframe(tsfile_path, table_name="test_table") |
| df_read = df_read.sort_values(TIME_COLUMN).reset_index(drop=True) |
| df_sorted = convert_to_nullable_types(df.sort_values('time').reset_index(drop=True)) |
| |
| assert df_read.shape == (20, 4) |
| assert df_read["device"].equals(df_sorted["device"]) |
| assert df_read["location"].equals(df_sorted["location"]) |
| assert df_read["value"].equals(df_sorted["value"]) |
| finally: |
| if os.path.exists(tsfile_path): |
| os.remove(tsfile_path) |
| |
| |
| def test_dataframe_to_tsfile_tag_time_unsorted(): |
| tsfile_path = "test_dataframe_to_tsfile_tag_time_unsorted.tsfile" |
| try: |
| if os.path.exists(tsfile_path): |
| os.remove(tsfile_path) |
| |
| df = pd.DataFrame({ |
| 'time': [30, 10, 20, 50, 40, 15, 25, 35, 5, 45], |
| 'device': ['device1', 'device1', 'device1', 'device2', 'device2', 'device1', 'device1', 'device2', |
| 'device1', 'device2'], |
| 'value': [i * 1.5 for i in range(10)] |
| }) |
| |
| dataframe_to_tsfile(df, tsfile_path, table_name="test_table", tag_column=["device"]) |
| |
| df_read = to_dataframe(tsfile_path, table_name="test_table") |
| df_expected = df.sort_values(by=['device', 'time']).reset_index(drop=True) |
| df_expected = convert_to_nullable_types(df_expected) |
| |
| assert df_read.shape == (10, 3) |
| assert df_read["device"].equals(df_expected["device"]) |
| assert df_read[TIME_COLUMN].equals(df_expected["time"]) |
| assert df_read["value"].equals(df_expected["value"]) |
| finally: |
| if os.path.exists(tsfile_path): |
| os.remove(tsfile_path) |
| |
| |
| def test_dataframe_to_tsfile_all_datatypes(): |
| tsfile_path = "test_dataframe_to_tsfile_all_types.tsfile" |
| try: |
| if os.path.exists(tsfile_path): |
| os.remove(tsfile_path) |
| |
| df = pd.DataFrame({ |
| 'time': [i for i in range(50)], |
| 'bool_col': [i % 2 == 0 for i in range(50)], |
| 'int32_col': pd.Series([i for i in range(50)], dtype='int32'), |
| 'int64_col': [i * 10 for i in range(50)], |
| 'float_col': pd.Series([i * 1.5 for i in range(50)], dtype='float32'), |
| 'double_col': [i * 2.5 for i in range(50)], |
| 'string_col': [f"str{i}" for i in range(50)], |
| 'blob_col': [f"blob{i}".encode('utf-8') for i in range(50)], |
| 'text_col': [f"text{i}" for i in range(50)], |
| 'date_col': [date(2025, i % 11 + 1, i % 20 + 1) for i in range(50)], |
| 'timestamp_col': [i for i in range(50)] |
| }) |
| |
| dataframe_to_tsfile(df, tsfile_path, table_name="test_table") |
| |
| df_read = to_dataframe(tsfile_path, table_name="test_table") |
| df_read = df_read.sort_values(TIME_COLUMN).reset_index(drop=True) |
| df_sorted = convert_to_nullable_types(df.sort_values('time').reset_index(drop=True)) |
| |
| assert df_read.shape == (50, 11) |
| assert df_read["bool_col"].equals(df_sorted["bool_col"]) |
| assert df_read["int32_col"].equals(df_sorted["int32_col"]) |
| assert df_read["int64_col"].equals(df_sorted["int64_col"]) |
| assert np.allclose(df_read["float_col"], df_sorted["float_col"]) |
| assert np.allclose(df_read["double_col"], df_sorted["double_col"]) |
| assert df_read["string_col"].equals(df_sorted["string_col"]) |
| assert df_read["text_col"].equals(df_sorted["text_col"]) |
| assert df_read["date_col"].equals(df_sorted["date_col"]) |
| assert df_read["timestamp_col"].equals(df_sorted["timestamp_col"]) |
| for i in range(50): |
| assert df_read["blob_col"].iloc[i] == df_sorted["blob_col"].iloc[i] |
| finally: |
| if os.path.exists(tsfile_path): |
| os.remove(tsfile_path) |
| |
| |
| def test_dataframe_to_tsfile_empty_dataframe(): |
| tsfile_path = "test_dataframe_to_tsfile_empty.tsfile" |
| try: |
| if os.path.exists(tsfile_path): |
| os.remove(tsfile_path) |
| |
| df = pd.DataFrame() |
| |
| with pytest.raises(ValueError, match="DataFrame cannot be None or empty"): |
| dataframe_to_tsfile(df, tsfile_path) |
| finally: |
| if os.path.exists(tsfile_path): |
| os.remove(tsfile_path) |
| |
| |
| def test_dataframe_to_tsfile_no_data_columns(): |
| tsfile_path = "test_dataframe_to_tsfile_no_data.tsfile" |
| try: |
| if os.path.exists(tsfile_path): |
| os.remove(tsfile_path) |
| |
| df = pd.DataFrame({ |
| 'time': [i for i in range(10)] |
| }) |
| |
| with pytest.raises(ValueError, match="DataFrame must have at least one data column"): |
| dataframe_to_tsfile(df, tsfile_path) |
| finally: |
| if os.path.exists(tsfile_path): |
| os.remove(tsfile_path) |
| |
| |
| def test_dataframe_to_tsfile_time_column_not_found(): |
| tsfile_path = "test_dataframe_to_tsfile_time_err.tsfile" |
| try: |
| if os.path.exists(tsfile_path): |
| os.remove(tsfile_path) |
| |
| df = pd.DataFrame({'time': [0, 1], 'value': [1.0, 2.0]}) |
| with pytest.raises(ValueError, match="Time column 'timestamp' not found"): |
| dataframe_to_tsfile(df, tsfile_path, time_column="timestamp") |
| finally: |
| if os.path.exists(tsfile_path): |
| os.remove(tsfile_path) |
| |
| |
| def test_dataframe_to_tsfile_invalid_time_column(): |
| tsfile_path = "test_dataframe_to_tsfile_invalid_time.tsfile" |
| try: |
| if os.path.exists(tsfile_path): |
| os.remove(tsfile_path) |
| |
| df = pd.DataFrame({ |
| 'timestamp': [i for i in range(10)], |
| 'value': [i * 1.0 for i in range(10)] |
| }) |
| |
| with pytest.raises(ValueError, match="Time column 'time' not found"): |
| dataframe_to_tsfile(df, tsfile_path, time_column="time") |
| finally: |
| if os.path.exists(tsfile_path): |
| os.remove(tsfile_path) |
| |
| |
| def test_dataframe_to_tsfile_non_integer_time_column(): |
| tsfile_path = "test_dataframe_to_tsfile_non_int_time.tsfile" |
| try: |
| if os.path.exists(tsfile_path): |
| os.remove(tsfile_path) |
| |
| df = pd.DataFrame({ |
| 'time': [f"time{i}" for i in range(10)], |
| 'value': [i * 1.0 for i in range(10)] |
| }) |
| |
| with pytest.raises(TypeError, match="must be integer type"): |
| dataframe_to_tsfile(df, tsfile_path) |
| finally: |
| if os.path.exists(tsfile_path): |
| os.remove(tsfile_path) |
| |
| |
| def test_dataframe_to_tsfile_tag_column_not_found(): |
| tsfile_path = "test_dataframe_to_tsfile_tag_err.tsfile" |
| try: |
| if os.path.exists(tsfile_path): |
| os.remove(tsfile_path) |
| |
| df = pd.DataFrame({'time': [0, 1], 'device': ['a', 'b'], 'value': [1.0, 2.0]}) |
| with pytest.raises(ValueError, match="Tag column 'invalid' not found"): |
| dataframe_to_tsfile(df, tsfile_path, tag_column=["invalid"]) |
| finally: |
| if os.path.exists(tsfile_path): |
| os.remove(tsfile_path) |
| |
| |
| def test_dataframe_to_tsfile_invalid_tag_column(): |
| tsfile_path = "test_dataframe_to_tsfile_invalid_tag.tsfile" |
| try: |
| if os.path.exists(tsfile_path): |
| os.remove(tsfile_path) |
| |
| df = pd.DataFrame({ |
| 'time': [i for i in range(10)], |
| 'value': [i * 1.0 for i in range(10)] |
| }) |
| |
| with pytest.raises(ValueError, match="Tag column 'invalid' not found"): |
| dataframe_to_tsfile(df, tsfile_path, tag_column=["invalid"]) |
| finally: |
| if os.path.exists(tsfile_path): |
| os.remove(tsfile_path) |