blob: 298e0d3403a40da688a9256d70f5a2bf503f0c6a [file] [log] [blame]
/* Copyright (c) 2012-2017 The ANTLR Project. All rights reserved.
* Use of this file is governed by the BSD 3-clause license that
* can be found in the LICENSE.txt file in the project root.
*/
#include "misc/MurmurHash.h"
#include "Lexer.h"
#include "Exceptions.h"
#include "Vocabulary.h"
#include "misc/IntervalSet.h"
using namespace antlr4;
using namespace antlr4::misc;
IntervalSet const IntervalSet::COMPLETE_CHAR_SET =
IntervalSet::of(Lexer::MIN_CHAR_VALUE, Lexer::MAX_CHAR_VALUE);
IntervalSet const IntervalSet::EMPTY_SET;
IntervalSet::IntervalSet() : _intervals() {
}
IntervalSet::IntervalSet(const IntervalSet &set) : IntervalSet() {
_intervals = set._intervals;
}
IntervalSet::IntervalSet(IntervalSet&& set) : IntervalSet(std::move(set._intervals)) {
}
IntervalSet::IntervalSet(std::vector<Interval>&& intervals) : _intervals(std::move(intervals)) {
}
IntervalSet& IntervalSet::operator=(const IntervalSet& other) {
_intervals = other._intervals;
return *this;
}
IntervalSet& IntervalSet::operator=(IntervalSet&& other) {
_intervals = std::move(other._intervals);
return *this;
}
IntervalSet IntervalSet::of(ssize_t a) {
return IntervalSet({ Interval(a, a) });
}
IntervalSet IntervalSet::of(ssize_t a, ssize_t b) {
return IntervalSet({ Interval(a, b) });
}
void IntervalSet::clear() {
_intervals.clear();
}
void IntervalSet::add(ssize_t el) {
add(el, el);
}
void IntervalSet::add(ssize_t a, ssize_t b) {
add(Interval(a, b));
}
void IntervalSet::add(const Interval &addition) {
if (addition.b < addition.a) {
return;
}
// find position in list
for (auto iterator = _intervals.begin(); iterator != _intervals.end(); ++iterator) {
Interval r = *iterator;
if (addition == r) {
return;
}
if (addition.adjacent(r) || !addition.disjoint(r)) {
// next to each other, make a single larger interval
Interval bigger = addition.Union(r);
*iterator = bigger;
// make sure we didn't just create an interval that
// should be merged with next interval in list
while (iterator + 1 != _intervals.end()) {
Interval next = *++iterator;
if (!bigger.adjacent(next) && bigger.disjoint(next)) {
break;
}
// if we bump up against or overlap next, merge
iterator = _intervals.erase(iterator);// remove this one
--iterator; // move backwards to what we just set
*iterator = bigger.Union(next); // set to 3 merged ones
// ml: no need to advance iterator, we do that in the next round anyway. ++iterator; // first call to next after previous duplicates the result
}
return;
}
if (addition.startsBeforeDisjoint(r)) {
// insert before r
//--iterator;
_intervals.insert(iterator, addition);
return;
}
// if disjoint and after r, a future iteration will handle it
}
// ok, must be after last interval (and disjoint from last interval)
// just add it
_intervals.push_back(addition);
}
IntervalSet IntervalSet::Or(const std::vector<IntervalSet> &sets) {
IntervalSet result;
for (const auto &s : sets) {
result.addAll(s);
}
return result;
}
IntervalSet& IntervalSet::addAll(const IntervalSet &set) {
// walk set and add each interval
for (auto const& interval : set._intervals) {
add(interval);
}
return *this;
}
IntervalSet IntervalSet::complement(ssize_t minElement, ssize_t maxElement) const {
return complement(IntervalSet::of(minElement, maxElement));
}
IntervalSet IntervalSet::complement(const IntervalSet &vocabulary) const {
return vocabulary.subtract(*this);
}
IntervalSet IntervalSet::subtract(const IntervalSet &other) const {
return subtract(*this, other);
}
IntervalSet IntervalSet::subtract(const IntervalSet &left, const IntervalSet &right) {
if (left.isEmpty()) {
return IntervalSet();
}
if (right.isEmpty()) {
// right set has no elements; just return the copy of the current set
return left;
}
IntervalSet result(left);
size_t resultI = 0;
size_t rightI = 0;
while (resultI < result._intervals.size() && rightI < right._intervals.size()) {
Interval &resultInterval = result._intervals[resultI];
const Interval &rightInterval = right._intervals[rightI];
// operation: (resultInterval - rightInterval) and update indexes
if (rightInterval.b < resultInterval.a) {
rightI++;
continue;
}
if (rightInterval.a > resultInterval.b) {
resultI++;
continue;
}
Interval beforeCurrent;
Interval afterCurrent;
if (rightInterval.a > resultInterval.a) {
beforeCurrent = Interval(resultInterval.a, rightInterval.a - 1);
}
if (rightInterval.b < resultInterval.b) {
afterCurrent = Interval(rightInterval.b + 1, resultInterval.b);
}
if (beforeCurrent.a > -1) { // -1 is the default value
if (afterCurrent.a > -1) {
// split the current interval into two
result._intervals[resultI] = beforeCurrent;
result._intervals.insert(result._intervals.begin() + resultI + 1, afterCurrent);
resultI++;
rightI++;
} else {
// replace the current interval
result._intervals[resultI] = beforeCurrent;
resultI++;
}
} else {
if (afterCurrent.a > -1) {
// replace the current interval
result._intervals[resultI] = afterCurrent;
rightI++;
} else {
// remove the current interval (thus no need to increment resultI)
result._intervals.erase(result._intervals.begin() + resultI);
}
}
}
// If rightI reached right.intervals.size(), no more intervals to subtract from result.
// If resultI reached result.intervals.size(), we would be subtracting from an empty set.
// Either way, we are done.
return result;
}
IntervalSet IntervalSet::Or(const IntervalSet &a) const {
IntervalSet result;
result.addAll(*this);
result.addAll(a);
return result;
}
IntervalSet IntervalSet::And(const IntervalSet &other) const {
IntervalSet intersection;
size_t i = 0;
size_t j = 0;
// iterate down both interval lists looking for nondisjoint intervals
while (i < _intervals.size() && j < other._intervals.size()) {
Interval mine = _intervals[i];
Interval theirs = other._intervals[j];
if (mine.startsBeforeDisjoint(theirs)) {
// move this iterator looking for interval that might overlap
i++;
} else if (theirs.startsBeforeDisjoint(mine)) {
// move other iterator looking for interval that might overlap
j++;
} else if (mine.properlyContains(theirs)) {
// overlap, add intersection, get next theirs
intersection.add(mine.intersection(theirs));
j++;
} else if (theirs.properlyContains(mine)) {
// overlap, add intersection, get next mine
intersection.add(mine.intersection(theirs));
i++;
} else if (!mine.disjoint(theirs)) {
// overlap, add intersection
intersection.add(mine.intersection(theirs));
// Move the iterator of lower range [a..b], but not
// the upper range as it may contain elements that will collide
// with the next iterator. So, if mine=[0..115] and
// theirs=[115..200], then intersection is 115 and move mine
// but not theirs as theirs may collide with the next range
// in thisIter.
// move both iterators to next ranges
if (mine.startsAfterNonDisjoint(theirs)) {
j++;
} else if (theirs.startsAfterNonDisjoint(mine)) {
i++;
}
}
}
return intersection;
}
bool IntervalSet::contains(size_t el) const {
return contains(symbolToNumeric(el));
}
bool IntervalSet::contains(ssize_t el) const {
if (_intervals.empty())
return false;
if (el < _intervals[0].a) // list is sorted and el is before first interval; not here
return false;
for (const auto &interval : _intervals) {
if (el >= interval.a && el <= interval.b) {
return true; // found in this interval
}
}
return false;
}
bool IntervalSet::isEmpty() const {
return _intervals.empty();
}
ssize_t IntervalSet::getSingleElement() const {
if (_intervals.size() == 1) {
if (_intervals[0].a == _intervals[0].b) {
return _intervals[0].a;
}
}
return Token::INVALID_TYPE; // XXX: this value is 0, but 0 is a valid interval range, how can that work?
}
ssize_t IntervalSet::getMaxElement() const {
if (_intervals.empty()) {
return Token::INVALID_TYPE;
}
return _intervals.back().b;
}
ssize_t IntervalSet::getMinElement() const {
if (_intervals.empty()) {
return Token::INVALID_TYPE;
}
return _intervals[0].a;
}
std::vector<Interval> const& IntervalSet::getIntervals() const {
return _intervals;
}
size_t IntervalSet::hashCode() const {
size_t hash = MurmurHash::initialize();
for (const auto &interval : _intervals) {
hash = MurmurHash::update(hash, interval.a);
hash = MurmurHash::update(hash, interval.b);
}
return MurmurHash::finish(hash, _intervals.size() * 2);
}
bool IntervalSet::operator == (const IntervalSet &other) const {
if (_intervals.empty() && other._intervals.empty())
return true;
if (_intervals.size() != other._intervals.size())
return false;
return std::equal(_intervals.begin(), _intervals.end(), other._intervals.begin());
}
std::string IntervalSet::toString() const {
return toString(false);
}
std::string IntervalSet::toString(bool elemAreChar) const {
if (_intervals.empty()) {
return "{}";
}
std::stringstream ss;
size_t effectiveSize = size();
if (effectiveSize > 1) {
ss << "{";
}
bool firstEntry = true;
for (const auto &interval : _intervals) {
if (!firstEntry)
ss << ", ";
firstEntry = false;
ssize_t a = interval.a;
ssize_t b = interval.b;
if (a == b) {
if (a == -1) {
ss << "<EOF>";
} else if (elemAreChar) {
ss << "'" << static_cast<char>(a) << "'";
} else {
ss << a;
}
} else {
if (elemAreChar) {
ss << "'" << static_cast<char>(a) << "'..'" << static_cast<char>(b) << "'";
} else {
ss << a << ".." << b;
}
}
}
if (effectiveSize > 1) {
ss << "}";
}
return ss.str();
}
std::string IntervalSet::toString(const std::vector<std::string> &tokenNames) const {
return toString(dfa::Vocabulary::fromTokenNames(tokenNames));
}
std::string IntervalSet::toString(const dfa::Vocabulary &vocabulary) const {
if (_intervals.empty()) {
return "{}";
}
std::stringstream ss;
size_t effectiveSize = size();
if (effectiveSize > 1) {
ss << "{";
}
bool firstEntry = true;
for (const auto &interval : _intervals) {
if (!firstEntry)
ss << ", ";
firstEntry = false;
ssize_t a = interval.a;
ssize_t b = interval.b;
if (a == b) {
ss << elementName(vocabulary, a);
} else {
for (ssize_t i = a; i <= b; i++) {
if (i > a) {
ss << ", ";
}
ss << elementName(vocabulary, i);
}
}
}
if (effectiveSize > 1) {
ss << "}";
}
return ss.str();
}
std::string IntervalSet::elementName(const std::vector<std::string> &tokenNames, ssize_t a) const {
return elementName(dfa::Vocabulary::fromTokenNames(tokenNames), a);
}
std::string IntervalSet::elementName(const dfa::Vocabulary &vocabulary, ssize_t a) const {
if (a == -1) {
return "<EOF>";
} else if (a == -2) {
return "<EPSILON>";
} else {
return vocabulary.getDisplayName(a);
}
}
size_t IntervalSet::size() const {
size_t result = 0;
for (const auto &interval : _intervals) {
result += size_t(interval.b - interval.a + 1);
}
return result;
}
std::vector<ssize_t> IntervalSet::toList() const {
std::vector<ssize_t> result;
for (const auto &interval : _intervals) {
ssize_t a = interval.a;
ssize_t b = interval.b;
for (ssize_t v = a; v <= b; v++) {
result.push_back(v);
}
}
return result;
}
std::set<ssize_t> IntervalSet::toSet() const {
std::set<ssize_t> result;
for (const auto &interval : _intervals) {
ssize_t a = interval.a;
ssize_t b = interval.b;
for (ssize_t v = a; v <= b; v++) {
result.insert(v);
}
}
return result;
}
ssize_t IntervalSet::get(size_t i) const {
size_t index = 0;
for (const auto &interval : _intervals) {
ssize_t a = interval.a;
ssize_t b = interval.b;
for (ssize_t v = a; v <= b; v++) {
if (index == i) {
return v;
}
index++;
}
}
return -1;
}
void IntervalSet::remove(size_t el) {
remove(symbolToNumeric(el));
}
void IntervalSet::remove(ssize_t el) {
for (size_t i = 0; i < _intervals.size(); ++i) {
Interval &interval = _intervals[i];
ssize_t a = interval.a;
ssize_t b = interval.b;
if (el < a) {
break; // list is sorted and el is before this interval; not here
}
// if whole interval x..x, rm
if (el == a && el == b) {
_intervals.erase(_intervals.begin() + (long)i);
break;
}
// if on left edge x..b, adjust left
if (el == a) {
interval.a++;
break;
}
// if on right edge a..x, adjust right
if (el == b) {
interval.b--;
break;
}
// if in middle a..x..b, split interval
if (el > a && el < b) { // found in this interval
ssize_t oldb = interval.b;
interval.b = el - 1; // [a..x-1]
add(el + 1, oldb); // add [x+1..b]
break; // ml: not in the Java code but I believe we also should stop searching here, as we found x.
}
}
}