blob: 01c83c15e6e9ba1bf1f6dedb73516aa1cb300373 [file] [log] [blame]
/* Copyright (c) 2012-2017 The ANTLR Project. All rights reserved.
* Use of this file is governed by the BSD 3-clause license that
* can be found in the LICENSE.txt file in the project root.
*/
#include "dfa/DFA.h"
#include "NoViableAltException.h"
#include "atn/DecisionState.h"
#include "ParserRuleContext.h"
#include "misc/IntervalSet.h"
#include "Parser.h"
#include "CommonTokenStream.h"
#include "atn/EmptyPredictionContext.h"
#include "atn/NotSetTransition.h"
#include "atn/AtomTransition.h"
#include "atn/RuleTransition.h"
#include "atn/PredicateTransition.h"
#include "atn/PrecedencePredicateTransition.h"
#include "atn/ActionTransition.h"
#include "atn/EpsilonTransition.h"
#include "atn/RuleStopState.h"
#include "atn/ATNConfigSet.h"
#include "atn/ATNConfig.h"
#include "atn/StarLoopEntryState.h"
#include "atn/BlockStartState.h"
#include "atn/BlockEndState.h"
#include "misc/Interval.h"
#include "ANTLRErrorListener.h"
#include "Vocabulary.h"
#include "support/Arrays.h"
#include "atn/ParserATNSimulator.h"
#define DEBUG_ATN 0
#define DEBUG_LIST_ATN_DECISIONS 0
#define DEBUG_DFA 0
#define RETRY_DEBUG 0
using namespace antlr4;
using namespace antlr4::atn;
using namespace antlrcpp;
const bool ParserATNSimulator::TURN_OFF_LR_LOOP_ENTRY_BRANCH_OPT = ParserATNSimulator::getLrLoopSetting();
ParserATNSimulator::ParserATNSimulator(const ATN &atn, std::vector<dfa::DFA> &decisionToDFA,
PredictionContextCache &sharedContextCache)
: ParserATNSimulator(nullptr, atn, decisionToDFA, sharedContextCache) {
}
ParserATNSimulator::ParserATNSimulator(Parser *parser, const ATN &atn, std::vector<dfa::DFA> &decisionToDFA,
PredictionContextCache &sharedContextCache)
: ATNSimulator(atn, sharedContextCache), decisionToDFA(decisionToDFA), parser(parser) {
InitializeInstanceFields();
}
void ParserATNSimulator::reset() {
}
void ParserATNSimulator::clearDFA() {
int size = (int)decisionToDFA.size();
decisionToDFA.clear();
for (int d = 0; d < size; ++d) {
decisionToDFA.push_back(dfa::DFA(atn.getDecisionState(d), d));
}
}
size_t ParserATNSimulator::adaptivePredict(TokenStream *input, size_t decision, ParserRuleContext *outerContext) {
#if DEBUG_ATN == 1 || DEBUG_LIST_ATN_DECISIONS == 1
std::cout << "adaptivePredict decision " << decision << " exec LA(1)==" << getLookaheadName(input) << " line "
<< input->LT(1)->getLine() << ":" << input->LT(1)->getCharPositionInLine() << std::endl;
#endif
_input = input;
_startIndex = input->index();
_outerContext = outerContext;
dfa::DFA &dfa = decisionToDFA[decision];
_dfa = &dfa;
ssize_t m = input->mark();
size_t index = _startIndex;
// Now we are certain to have a specific decision's DFA
// But, do we still need an initial state?
auto onExit = finally([this, input, index, m] {
mergeCache.clear(); // wack cache after each prediction
_dfa = nullptr;
input->seek(index);
input->release(m);
});
dfa::DFAState *s0;
if (dfa.isPrecedenceDfa()) {
// the start state for a precedence DFA depends on the current
// parser precedence, and is provided by a DFA method.
s0 = dfa.getPrecedenceStartState(parser->getPrecedence());
} else {
// the start state for a "regular" DFA is just s0
s0 = dfa.s0;
}
if (s0 == nullptr) {
bool fullCtx = false;
std::unique_ptr<ATNConfigSet> s0_closure = computeStartState(dynamic_cast<ATNState *>(dfa.atnStartState),
&ParserRuleContext::EMPTY, fullCtx);
_stateLock.writeLock();
if (dfa.isPrecedenceDfa()) {
/* If this is a precedence DFA, we use applyPrecedenceFilter
* to convert the computed start state to a precedence start
* state. We then use DFA.setPrecedenceStartState to set the
* appropriate start state for the precedence level rather
* than simply setting DFA.s0.
*/
dfa.s0->configs = std::move(s0_closure); // not used for prediction but useful to know start configs anyway
dfa::DFAState *newState = new dfa::DFAState(applyPrecedenceFilter(dfa.s0->configs.get())); /* mem-check: managed by the DFA or deleted below */
s0 = addDFAState(dfa, newState);
dfa.setPrecedenceStartState(parser->getPrecedence(), s0, _edgeLock);
if (s0 != newState) {
delete newState; // If there was already a state with this config set we don't need the new one.
}
} else {
dfa::DFAState *newState = new dfa::DFAState(std::move(s0_closure)); /* mem-check: managed by the DFA or deleted below */
s0 = addDFAState(dfa, newState);
if (dfa.s0 != s0) {
delete dfa.s0; // Delete existing s0 DFA state, if there's any.
dfa.s0 = s0;
}
if (s0 != newState) {
delete newState; // If there was already a state with this config set we don't need the new one.
}
}
_stateLock.writeUnlock();
}
// We can start with an existing DFA.
size_t alt = execATN(dfa, s0, input, index, outerContext != nullptr ? outerContext : &ParserRuleContext::EMPTY);
return alt;
}
size_t ParserATNSimulator::execATN(dfa::DFA &dfa, dfa::DFAState *s0, TokenStream *input, size_t startIndex,
ParserRuleContext *outerContext) {
#if DEBUG_ATN == 1 || DEBUG_LIST_ATN_DECISIONS == 1
std::cout << "execATN decision " << dfa.decision << " exec LA(1)==" << getLookaheadName(input) <<
" line " << input->LT(1)->getLine() << ":" << input->LT(1)->getCharPositionInLine() << std::endl;
#endif
dfa::DFAState *previousD = s0;
#if DEBUG_ATN == 1
std::cout << "s0 = " << s0 << std::endl;
#endif
size_t t = input->LA(1);
while (true) { // while more work
dfa::DFAState *D = getExistingTargetState(previousD, t);
if (D == nullptr) {
D = computeTargetState(dfa, previousD, t);
}
if (D == ERROR.get()) {
// if any configs in previous dipped into outer context, that
// means that input up to t actually finished entry rule
// at least for SLL decision. Full LL doesn't dip into outer
// so don't need special case.
// We will get an error no matter what so delay until after
// decision; better error message. Also, no reachable target
// ATN states in SLL implies LL will also get nowhere.
// If conflict in states that dip out, choose min since we
// will get error no matter what.
NoViableAltException e = noViableAlt(input, outerContext, previousD->configs.get(), startIndex, false);
input->seek(startIndex);
size_t alt = getSynValidOrSemInvalidAltThatFinishedDecisionEntryRule(previousD->configs.get(), outerContext);
if (alt != ATN::INVALID_ALT_NUMBER) {
return alt;
}
throw e;
}
if (D->requiresFullContext && _mode != PredictionMode::SLL) {
// IF PREDS, MIGHT RESOLVE TO SINGLE ALT => SLL (or syntax error)
BitSet conflictingAlts;
if (D->predicates.size() != 0) {
#if DEBUG_ATN == 1
std::cout << "DFA state has preds in DFA sim LL failover" << std::endl;
#endif
size_t conflictIndex = input->index();
if (conflictIndex != startIndex) {
input->seek(startIndex);
}
conflictingAlts = evalSemanticContext(D->predicates, outerContext, true);
if (conflictingAlts.count() == 1) {
#if DEBUG_ATN == 1
std::cout << "Full LL avoided" << std::endl;
#endif
return conflictingAlts.nextSetBit(0);
}
if (conflictIndex != startIndex) {
// restore the index so reporting the fallback to full
// context occurs with the index at the correct spot
input->seek(conflictIndex);
}
}
#if DEBUG_DFA == 1
std::cout << "ctx sensitive state " << outerContext << " in " << D << std::endl;
#endif
bool fullCtx = true;
Ref<ATNConfigSet> s0_closure = computeStartState(dfa.atnStartState, outerContext, fullCtx);
reportAttemptingFullContext(dfa, conflictingAlts, D->configs.get(), startIndex, input->index());
size_t alt = execATNWithFullContext(dfa, D, s0_closure.get(), input, startIndex, outerContext);
return alt;
}
if (D->isAcceptState) {
if (D->predicates.empty()) {
return D->prediction;
}
size_t stopIndex = input->index();
input->seek(startIndex);
BitSet alts = evalSemanticContext(D->predicates, outerContext, true);
switch (alts.count()) {
case 0:
throw noViableAlt(input, outerContext, D->configs.get(), startIndex, false);
case 1:
return alts.nextSetBit(0);
default:
// report ambiguity after predicate evaluation to make sure the correct
// set of ambig alts is reported.
reportAmbiguity(dfa, D, startIndex, stopIndex, false, alts, D->configs.get());
return alts.nextSetBit(0);
}
}
previousD = D;
if (t != Token::EOF) {
input->consume();
t = input->LA(1);
}
}
}
dfa::DFAState *ParserATNSimulator::getExistingTargetState(dfa::DFAState *previousD, size_t t) {
dfa::DFAState* retval;
_edgeLock.readLock();
auto iterator = previousD->edges.find(t);
retval = (iterator == previousD->edges.end()) ? nullptr : iterator->second;
_edgeLock.readUnlock();
return retval;
}
dfa::DFAState *ParserATNSimulator::computeTargetState(dfa::DFA &dfa, dfa::DFAState *previousD, size_t t) {
std::unique_ptr<ATNConfigSet> reach = computeReachSet(previousD->configs.get(), t, false);
if (reach == nullptr) {
addDFAEdge(dfa, previousD, t, ERROR.get());
return ERROR.get();
}
// create new target state; we'll add to DFA after it's complete
dfa::DFAState *D = new dfa::DFAState(std::move(reach)); /* mem-check: managed by the DFA or deleted below, "reach" is no longer valid now. */
size_t predictedAlt = getUniqueAlt(D->configs.get());
if (predictedAlt != ATN::INVALID_ALT_NUMBER) {
// NO CONFLICT, UNIQUELY PREDICTED ALT
D->isAcceptState = true;
D->configs->uniqueAlt = predictedAlt;
D->prediction = predictedAlt;
} else if (PredictionModeClass::hasSLLConflictTerminatingPrediction(_mode, D->configs.get())) {
// MORE THAN ONE VIABLE ALTERNATIVE
D->configs->conflictingAlts = getConflictingAlts(D->configs.get());
D->requiresFullContext = true;
// in SLL-only mode, we will stop at this state and return the minimum alt
D->isAcceptState = true;
D->prediction = D->configs->conflictingAlts.nextSetBit(0);
}
if (D->isAcceptState && D->configs->hasSemanticContext) {
predicateDFAState(D, atn.getDecisionState(dfa.decision));
if (D->predicates.size() != 0) {
D->prediction = ATN::INVALID_ALT_NUMBER;
}
}
// all adds to dfa are done after we've created full D state
dfa::DFAState *state = addDFAEdge(dfa, previousD, t, D);
if (state != D) {
delete D; // If the new state exists already we don't need it and use the existing one instead.
}
return state;
}
void ParserATNSimulator::predicateDFAState(dfa::DFAState *dfaState, DecisionState *decisionState) {
// We need to test all predicates, even in DFA states that
// uniquely predict alternative.
size_t nalts = decisionState->transitions.size();
// Update DFA so reach becomes accept state with (predicate,alt)
// pairs if preds found for conflicting alts
BitSet altsToCollectPredsFrom = getConflictingAltsOrUniqueAlt(dfaState->configs.get());
std::vector<Ref<SemanticContext>> altToPred = getPredsForAmbigAlts(altsToCollectPredsFrom, dfaState->configs.get(), nalts);
if (!altToPred.empty()) {
dfaState->predicates = getPredicatePredictions(altsToCollectPredsFrom, altToPred);
dfaState->prediction = ATN::INVALID_ALT_NUMBER; // make sure we use preds
} else {
// There are preds in configs but they might go away
// when OR'd together like {p}? || NONE == NONE. If neither
// alt has preds, resolve to min alt
dfaState->prediction = altsToCollectPredsFrom.nextSetBit(0);
}
}
size_t ParserATNSimulator::execATNWithFullContext(dfa::DFA &dfa, dfa::DFAState *D, ATNConfigSet *s0,
TokenStream *input, size_t startIndex, ParserRuleContext *outerContext) {
bool fullCtx = true;
bool foundExactAmbig = false;
std::unique_ptr<ATNConfigSet> reach;
ATNConfigSet *previous = s0;
input->seek(startIndex);
size_t t = input->LA(1);
size_t predictedAlt;
while (true) {
reach = computeReachSet(previous, t, fullCtx);
if (reach == nullptr) {
// if any configs in previous dipped into outer context, that
// means that input up to t actually finished entry rule
// at least for LL decision. Full LL doesn't dip into outer
// so don't need special case.
// We will get an error no matter what so delay until after
// decision; better error message. Also, no reachable target
// ATN states in SLL implies LL will also get nowhere.
// If conflict in states that dip out, choose min since we
// will get error no matter what.
NoViableAltException e = noViableAlt(input, outerContext, previous, startIndex, previous != s0);
input->seek(startIndex);
size_t alt = getSynValidOrSemInvalidAltThatFinishedDecisionEntryRule(previous, outerContext);
if (alt != ATN::INVALID_ALT_NUMBER) {
return alt;
}
throw e;
}
if (previous != s0) // Don't delete the start set.
delete previous;
previous = nullptr;
std::vector<BitSet> altSubSets = PredictionModeClass::getConflictingAltSubsets(reach.get());
reach->uniqueAlt = getUniqueAlt(reach.get());
// unique prediction?
if (reach->uniqueAlt != ATN::INVALID_ALT_NUMBER) {
predictedAlt = reach->uniqueAlt;
break;
}
if (_mode != PredictionMode::LL_EXACT_AMBIG_DETECTION) {
predictedAlt = PredictionModeClass::resolvesToJustOneViableAlt(altSubSets);
if (predictedAlt != ATN::INVALID_ALT_NUMBER) {
break;
}
} else {
// In exact ambiguity mode, we never try to terminate early.
// Just keeps scarfing until we know what the conflict is
if (PredictionModeClass::allSubsetsConflict(altSubSets) && PredictionModeClass::allSubsetsEqual(altSubSets)) {
foundExactAmbig = true;
predictedAlt = PredictionModeClass::getSingleViableAlt(altSubSets);
break;
}
// else there are multiple non-conflicting subsets or
// we're not sure what the ambiguity is yet.
// So, keep going.
}
previous = reach.release();
if (t != Token::EOF) {
input->consume();
t = input->LA(1);
}
}
// If the configuration set uniquely predicts an alternative,
// without conflict, then we know that it's a full LL decision
// not SLL.
if (reach->uniqueAlt != ATN::INVALID_ALT_NUMBER) {
reportContextSensitivity(dfa, predictedAlt, reach.get(), startIndex, input->index());
return predictedAlt;
}
// We do not check predicates here because we have checked them
// on-the-fly when doing full context prediction.
/*
In non-exact ambiguity detection mode, we might actually be able to
detect an exact ambiguity, but I'm not going to spend the cycles
needed to check. We only emit ambiguity warnings in exact ambiguity
mode.
For example, we might know that we have conflicting configurations.
But, that does not mean that there is no way forward without a
conflict. It's possible to have nonconflicting alt subsets as in:
LL altSubSets=[{1, 2}, {1, 2}, {1}, {1, 2}]
from
[(17,1,[5 $]), (13,1,[5 10 $]), (21,1,[5 10 $]), (11,1,[$]),
(13,2,[5 10 $]), (21,2,[5 10 $]), (11,2,[$])]
In this case, (17,1,[5 $]) indicates there is some next sequence that
would resolve this without conflict to alternative 1. Any other viable
next sequence, however, is associated with a conflict. We stop
looking for input because no amount of further lookahead will alter
the fact that we should predict alternative 1. We just can't say for
sure that there is an ambiguity without looking further.
*/
reportAmbiguity(dfa, D, startIndex, input->index(), foundExactAmbig, reach->getAlts(), reach.get());
return predictedAlt;
}
std::unique_ptr<ATNConfigSet> ParserATNSimulator::computeReachSet(ATNConfigSet *closure_, size_t t, bool fullCtx) {
std::unique_ptr<ATNConfigSet> intermediate(new ATNConfigSet(fullCtx));
/* Configurations already in a rule stop state indicate reaching the end
* of the decision rule (local context) or end of the start rule (full
* context). Once reached, these configurations are never updated by a
* closure operation, so they are handled separately for the performance
* advantage of having a smaller intermediate set when calling closure.
*
* For full-context reach operations, separate handling is required to
* ensure that the alternative matching the longest overall sequence is
* chosen when multiple such configurations can match the input.
*/
std::vector<Ref<ATNConfig>> skippedStopStates;
// First figure out where we can reach on input t
for (auto &c : closure_->configs) {
if (is<RuleStopState *>(c->state)) {
assert(c->context->isEmpty());
if (fullCtx || t == Token::EOF) {
skippedStopStates.push_back(c);
}
continue;
}
size_t n = c->state->transitions.size();
for (size_t ti = 0; ti < n; ti++) { // for each transition
Transition *trans = c->state->transitions[ti];
ATNState *target = getReachableTarget(trans, (int)t);
if (target != nullptr) {
intermediate->add(std::make_shared<ATNConfig>(c, target), &mergeCache);
}
}
}
// Now figure out where the reach operation can take us...
std::unique_ptr<ATNConfigSet> reach;
/* This block optimizes the reach operation for intermediate sets which
* trivially indicate a termination state for the overall
* adaptivePredict operation.
*
* The conditions assume that intermediate
* contains all configurations relevant to the reach set, but this
* condition is not true when one or more configurations have been
* withheld in skippedStopStates, or when the current symbol is EOF.
*/
if (skippedStopStates.empty() && t != Token::EOF) {
if (intermediate->size() == 1) {
// Don't pursue the closure if there is just one state.
// It can only have one alternative; just add to result
// Also don't pursue the closure if there is unique alternative
// among the configurations.
reach = std::move(intermediate);
} else if (getUniqueAlt(intermediate.get()) != ATN::INVALID_ALT_NUMBER) {
// Also don't pursue the closure if there is unique alternative
// among the configurations.
reach = std::move(intermediate);
}
}
/* If the reach set could not be trivially determined, perform a closure
* operation on the intermediate set to compute its initial value.
*/
if (reach == nullptr) {
reach.reset(new ATNConfigSet(fullCtx));
ATNConfig::Set closureBusy;
bool treatEofAsEpsilon = t == Token::EOF;
for (auto c : intermediate->configs) {
closure(c, reach.get(), closureBusy, false, fullCtx, treatEofAsEpsilon);
}
}
if (t == IntStream::EOF) {
/* After consuming EOF no additional input is possible, so we are
* only interested in configurations which reached the end of the
* decision rule (local context) or end of the start rule (full
* context). Update reach to contain only these configurations. This
* handles both explicit EOF transitions in the grammar and implicit
* EOF transitions following the end of the decision or start rule.
*
* When reach==intermediate, no closure operation was performed. In
* this case, removeAllConfigsNotInRuleStopState needs to check for
* reachable rule stop states as well as configurations already in
* a rule stop state.
*
* This is handled before the configurations in skippedStopStates,
* because any configurations potentially added from that list are
* already guaranteed to meet this condition whether or not it's
* required.
*/
ATNConfigSet *temp = removeAllConfigsNotInRuleStopState(reach.get(), *reach == *intermediate);
if (temp != reach.get())
reach.reset(temp); // We got a new set, so use that.
}
/* If skippedStopStates is not null, then it contains at least one
* configuration. For full-context reach operations, these
* configurations reached the end of the start rule, in which case we
* only add them back to reach if no configuration during the current
* closure operation reached such a state. This ensures adaptivePredict
* chooses an alternative matching the longest overall sequence when
* multiple alternatives are viable.
*/
if (skippedStopStates.size() > 0 && (!fullCtx || !PredictionModeClass::hasConfigInRuleStopState(reach.get()))) {
assert(!skippedStopStates.empty());
for (auto c : skippedStopStates) {
reach->add(c, &mergeCache);
}
}
if (reach->isEmpty()) {
return nullptr;
}
return reach;
}
ATNConfigSet* ParserATNSimulator::removeAllConfigsNotInRuleStopState(ATNConfigSet *configs,
bool lookToEndOfRule) {
if (PredictionModeClass::allConfigsInRuleStopStates(configs)) {
return configs;
}
ATNConfigSet *result = new ATNConfigSet(configs->fullCtx); /* mem-check: released by caller */
for (auto &config : configs->configs) {
if (is<RuleStopState*>(config->state)) {
result->add(config, &mergeCache);
continue;
}
if (lookToEndOfRule && config->state->epsilonOnlyTransitions) {
misc::IntervalSet nextTokens = atn.nextTokens(config->state);
if (nextTokens.contains(Token::EPSILON)) {
ATNState *endOfRuleState = atn.ruleToStopState[config->state->ruleIndex];
result->add(std::make_shared<ATNConfig>(config, endOfRuleState), &mergeCache);
}
}
}
return result;
}
std::unique_ptr<ATNConfigSet> ParserATNSimulator::computeStartState(ATNState *p, RuleContext *ctx, bool fullCtx) {
// always at least the implicit call to start rule
Ref<PredictionContext> initialContext = PredictionContext::fromRuleContext(atn, ctx);
std::unique_ptr<ATNConfigSet> configs(new ATNConfigSet(fullCtx));
for (size_t i = 0; i < p->transitions.size(); i++) {
ATNState *target = p->transitions[i]->target;
Ref<ATNConfig> c = std::make_shared<ATNConfig>(target, (int)i + 1, initialContext);
ATNConfig::Set closureBusy;
closure(c, configs.get(), closureBusy, true, fullCtx, false);
}
return configs;
}
std::unique_ptr<ATNConfigSet> ParserATNSimulator::applyPrecedenceFilter(ATNConfigSet *configs) {
std::map<size_t, Ref<PredictionContext>> statesFromAlt1;
std::unique_ptr<ATNConfigSet> configSet(new ATNConfigSet(configs->fullCtx));
for (Ref<ATNConfig> &config : configs->configs) {
// handle alt 1 first
if (config->alt != 1) {
continue;
}
Ref<SemanticContext> updatedContext = config->semanticContext->evalPrecedence(parser, _outerContext);
if (updatedContext == nullptr) {
// the configuration was eliminated
continue;
}
statesFromAlt1[config->state->stateNumber] = config->context;
if (updatedContext != config->semanticContext) {
configSet->add(std::make_shared<ATNConfig>(config, updatedContext), &mergeCache);
}
else {
configSet->add(config, &mergeCache);
}
}
for (Ref<ATNConfig> &config : configs->configs) {
if (config->alt == 1) {
// already handled
continue;
}
if (!config->isPrecedenceFilterSuppressed()) {
/* In the future, this elimination step could be updated to also
* filter the prediction context for alternatives predicting alt>1
* (basically a graph subtraction algorithm).
*/
auto iterator = statesFromAlt1.find(config->state->stateNumber);
if (iterator != statesFromAlt1.end() && *iterator->second == *config->context) {
// eliminated
continue;
}
}
configSet->add(config, &mergeCache);
}
return configSet;
}
atn::ATNState* ParserATNSimulator::getReachableTarget(Transition *trans, size_t ttype) {
if (trans->matches(ttype, 0, atn.maxTokenType)) {
return trans->target;
}
return nullptr;
}
// Note that caller must memory manage the returned value from this function
std::vector<Ref<SemanticContext>> ParserATNSimulator::getPredsForAmbigAlts(const BitSet &ambigAlts,
ATNConfigSet *configs, size_t nalts) {
// REACH=[1|1|[]|0:0, 1|2|[]|0:1]
/* altToPred starts as an array of all null contexts. The entry at index i
* corresponds to alternative i. altToPred[i] may have one of three values:
* 1. null: no ATNConfig c is found such that c.alt==i
* 2. SemanticContext.NONE: At least one ATNConfig c exists such that
* c.alt==i and c.semanticContext==SemanticContext.NONE. In other words,
* alt i has at least one un-predicated config.
* 3. Non-NONE Semantic Context: There exists at least one, and for all
* ATNConfig c such that c.alt==i, c.semanticContext!=SemanticContext.NONE.
*
* From this, it is clear that NONE||anything==NONE.
*/
std::vector<Ref<SemanticContext>> altToPred(nalts + 1);
for (auto &c : configs->configs) {
if (ambigAlts.test(c->alt)) {
altToPred[c->alt] = SemanticContext::Or(altToPred[c->alt], c->semanticContext);
}
}
size_t nPredAlts = 0;
for (size_t i = 1; i <= nalts; i++) {
if (altToPred[i] == nullptr) {
altToPred[i] = SemanticContext::NONE;
} else if (altToPred[i] != SemanticContext::NONE) {
nPredAlts++;
}
}
// nonambig alts are null in altToPred
if (nPredAlts == 0) {
altToPred.clear();
}
#if DEBUG_ATN == 1
std::cout << "getPredsForAmbigAlts result " << Arrays::toString(altToPred) << std::endl;
#endif
return altToPred;
}
std::vector<dfa::DFAState::PredPrediction *> ParserATNSimulator::getPredicatePredictions(const antlrcpp::BitSet &ambigAlts,
std::vector<Ref<SemanticContext>> const& altToPred) {
bool containsPredicate = std::find_if(altToPred.begin(), altToPred.end(), [](Ref<SemanticContext> const context) {
return context != SemanticContext::NONE;
}) != altToPred.end();
if (!containsPredicate)
return {};
std::vector<dfa::DFAState::PredPrediction*> pairs;
for (size_t i = 1; i < altToPred.size(); ++i) {
Ref<SemanticContext> const& pred = altToPred[i];
assert(pred != nullptr); // unpredicted is indicated by SemanticContext.NONE
if (ambigAlts.test(i)) {
pairs.push_back(new dfa::DFAState::PredPrediction(pred, (int)i)); /* mem-check: managed by the DFAState it will be assigned to after return */
}
}
return pairs;
}
size_t ParserATNSimulator::getSynValidOrSemInvalidAltThatFinishedDecisionEntryRule(ATNConfigSet *configs,
ParserRuleContext *outerContext)
{
std::pair<ATNConfigSet *, ATNConfigSet *> sets = splitAccordingToSemanticValidity(configs, outerContext);
std::unique_ptr<ATNConfigSet> semValidConfigs(sets.first);
std::unique_ptr<ATNConfigSet> semInvalidConfigs(sets.second);
size_t alt = getAltThatFinishedDecisionEntryRule(semValidConfigs.get());
if (alt != ATN::INVALID_ALT_NUMBER) { // semantically/syntactically viable path exists
return alt;
}
// Is there a syntactically valid path with a failed pred?
if (!semInvalidConfigs->configs.empty()) {
alt = getAltThatFinishedDecisionEntryRule(semInvalidConfigs.get());
if (alt != ATN::INVALID_ALT_NUMBER) { // syntactically viable path exists
return alt;
}
}
return ATN::INVALID_ALT_NUMBER;
}
size_t ParserATNSimulator::getAltThatFinishedDecisionEntryRule(ATNConfigSet *configs) {
misc::IntervalSet alts;
for (auto &c : configs->configs) {
if (c->getOuterContextDepth() > 0 || (is<RuleStopState *>(c->state) && c->context->hasEmptyPath())) {
alts.add(c->alt);
}
}
if (alts.size() == 0) {
return ATN::INVALID_ALT_NUMBER;
}
return alts.getMinElement();
}
std::pair<ATNConfigSet *, ATNConfigSet *> ParserATNSimulator::splitAccordingToSemanticValidity(ATNConfigSet *configs,
ParserRuleContext *outerContext) {
// mem-check: both pointers must be freed by the caller.
ATNConfigSet *succeeded(new ATNConfigSet(configs->fullCtx));
ATNConfigSet *failed(new ATNConfigSet(configs->fullCtx));
for (Ref<ATNConfig> &c : configs->configs) {
if (c->semanticContext != SemanticContext::NONE) {
bool predicateEvaluationResult = evalSemanticContext(c->semanticContext, outerContext, c->alt, configs->fullCtx);
if (predicateEvaluationResult) {
succeeded->add(c);
} else {
failed->add(c);
}
} else {
succeeded->add(c);
}
}
return { succeeded, failed };
}
BitSet ParserATNSimulator::evalSemanticContext(std::vector<dfa::DFAState::PredPrediction*> predPredictions,
ParserRuleContext *outerContext, bool complete) {
BitSet predictions;
for (auto *prediction : predPredictions) {
if (prediction->pred == SemanticContext::NONE) {
predictions.set(prediction->alt);
if (!complete) {
break;
}
continue;
}
bool fullCtx = false; // in dfa
bool predicateEvaluationResult = evalSemanticContext(prediction->pred, outerContext, prediction->alt, fullCtx);
#if DEBUG_ATN == 1 || DEBUG_DFA == 1
std::cout << "eval pred " << prediction->toString() << " = " << predicateEvaluationResult << std::endl;
#endif
if (predicateEvaluationResult) {
#if DEBUG_ATN == 1 || DEBUG_DFA == 1
std::cout << "PREDICT " << prediction->alt << std::endl;
#endif
predictions.set(prediction->alt);
if (!complete) {
break;
}
}
}
return predictions;
}
bool ParserATNSimulator::evalSemanticContext(Ref<SemanticContext> const& pred, ParserRuleContext *parserCallStack,
size_t /*alt*/, bool /*fullCtx*/) {
return pred->eval(parser, parserCallStack);
}
void ParserATNSimulator::closure(Ref<ATNConfig> const& config, ATNConfigSet *configs, ATNConfig::Set &closureBusy,
bool collectPredicates, bool fullCtx, bool treatEofAsEpsilon) {
const int initialDepth = 0;
closureCheckingStopState(config, configs, closureBusy, collectPredicates, fullCtx, initialDepth, treatEofAsEpsilon);
assert(!fullCtx || !configs->dipsIntoOuterContext);
}
void ParserATNSimulator::closureCheckingStopState(Ref<ATNConfig> const& config, ATNConfigSet *configs,
ATNConfig::Set &closureBusy, bool collectPredicates, bool fullCtx, int depth, bool treatEofAsEpsilon) {
#if DEBUG_ATN == 1
std::cout << "closure(" << config->toString(true) << ")" << std::endl;
#endif
if (is<RuleStopState *>(config->state)) {
// We hit rule end. If we have context info, use it
// run thru all possible stack tops in ctx
if (!config->context->isEmpty()) {
for (size_t i = 0; i < config->context->size(); i++) {
if (config->context->getReturnState(i) == PredictionContext::EMPTY_RETURN_STATE) {
if (fullCtx) {
configs->add(std::make_shared<ATNConfig>(config, config->state, PredictionContext::EMPTY), &mergeCache);
continue;
} else {
// we have no context info, just chase follow links (if greedy)
#if DEBUG_ATN == 1
std::cout << "FALLING off rule " << getRuleName(config->state->ruleIndex) << std::endl;
#endif
closure_(config, configs, closureBusy, collectPredicates, fullCtx, depth, treatEofAsEpsilon);
}
continue;
}
ATNState *returnState = atn.states[config->context->getReturnState(i)];
std::weak_ptr<PredictionContext> newContext = config->context->getParent(i); // "pop" return state
Ref<ATNConfig> c = std::make_shared<ATNConfig>(returnState, config->alt, newContext.lock(), config->semanticContext);
// While we have context to pop back from, we may have
// gotten that context AFTER having falling off a rule.
// Make sure we track that we are now out of context.
//
// This assignment also propagates the
// isPrecedenceFilterSuppressed() value to the new
// configuration.
c->reachesIntoOuterContext = config->reachesIntoOuterContext;
assert(depth > INT_MIN);
closureCheckingStopState(c, configs, closureBusy, collectPredicates, fullCtx, depth - 1, treatEofAsEpsilon);
}
return;
} else if (fullCtx) {
// reached end of start rule
configs->add(config, &mergeCache);
return;
} else {
// else if we have no context info, just chase follow links (if greedy)
}
}
closure_(config, configs, closureBusy, collectPredicates, fullCtx, depth, treatEofAsEpsilon);
}
void ParserATNSimulator::closure_(Ref<ATNConfig> const& config, ATNConfigSet *configs, ATNConfig::Set &closureBusy,
bool collectPredicates, bool fullCtx, int depth, bool treatEofAsEpsilon) {
ATNState *p = config->state;
// optimization
if (!p->epsilonOnlyTransitions) {
// make sure to not return here, because EOF transitions can act as
// both epsilon transitions and non-epsilon transitions.
configs->add(config, &mergeCache);
}
for (size_t i = 0; i < p->transitions.size(); i++) {
if (i == 0 && canDropLoopEntryEdgeInLeftRecursiveRule(config.get()))
continue;
Transition *t = p->transitions[i];
bool continueCollecting = !is<ActionTransition*>(t) && collectPredicates;
Ref<ATNConfig> c = getEpsilonTarget(config, t, continueCollecting, depth == 0, fullCtx, treatEofAsEpsilon);
if (c != nullptr) {
int newDepth = depth;
if (is<RuleStopState*>(config->state)) {
assert(!fullCtx);
// target fell off end of rule; mark resulting c as having dipped into outer context
// We can't get here if incoming config was rule stop and we had context
// track how far we dip into outer context. Might
// come in handy and we avoid evaluating context dependent
// preds if this is > 0.
if (closureBusy.count(c) > 0) {
// avoid infinite recursion for right-recursive rules
continue;
}
closureBusy.insert(c);
if (_dfa != nullptr && _dfa->isPrecedenceDfa()) {
size_t outermostPrecedenceReturn = dynamic_cast<EpsilonTransition *>(t)->outermostPrecedenceReturn();
if (outermostPrecedenceReturn == _dfa->atnStartState->ruleIndex) {
c->setPrecedenceFilterSuppressed(true);
}
}
c->reachesIntoOuterContext++;
if (!t->isEpsilon()) {
// avoid infinite recursion for EOF* and EOF+
if (closureBusy.count(c) == 0) {
closureBusy.insert(c);
} else {
continue;
}
}
configs->dipsIntoOuterContext = true; // TODO: can remove? only care when we add to set per middle of this method
assert(newDepth > INT_MIN);
newDepth--;
#if DEBUG_DFA == 1
std::cout << "dips into outer ctx: " << c << std::endl;
#endif
} else if (!t->isEpsilon()) {
// avoid infinite recursion for EOF* and EOF+
if (closureBusy.count(c) == 0) {
closureBusy.insert(c);
} else {
continue;
}
}
if (is<RuleTransition*>(t)) {
// latch when newDepth goes negative - once we step out of the entry context we can't return
if (newDepth >= 0) {
newDepth++;
}
}
closureCheckingStopState(c, configs, closureBusy, continueCollecting, fullCtx, newDepth, treatEofAsEpsilon);
}
}
}
bool ParserATNSimulator::canDropLoopEntryEdgeInLeftRecursiveRule(ATNConfig *config) const {
if (TURN_OFF_LR_LOOP_ENTRY_BRANCH_OPT)
return false;
ATNState *p = config->state;
// First check to see if we are in StarLoopEntryState generated during
// left-recursion elimination. For efficiency, also check if
// the context has an empty stack case. If so, it would mean
// global FOLLOW so we can't perform optimization
if (p->getStateType() != ATNState::STAR_LOOP_ENTRY ||
!((StarLoopEntryState *)p)->isPrecedenceDecision || // Are we the special loop entry/exit state?
config->context->isEmpty() || // If SLL wildcard
config->context->hasEmptyPath())
{
return false;
}
// Require all return states to return back to the same rule
// that p is in.
size_t numCtxs = config->context->size();
for (size_t i = 0; i < numCtxs; i++) { // for each stack context
ATNState *returnState = atn.states[config->context->getReturnState(i)];
if (returnState->ruleIndex != p->ruleIndex)
return false;
}
BlockStartState *decisionStartState = (BlockStartState *)p->transitions[0]->target;
size_t blockEndStateNum = decisionStartState->endState->stateNumber;
BlockEndState *blockEndState = (BlockEndState *)atn.states[blockEndStateNum];
// Verify that the top of each stack context leads to loop entry/exit
// state through epsilon edges and w/o leaving rule.
for (size_t i = 0; i < numCtxs; i++) { // for each stack context
size_t returnStateNumber = config->context->getReturnState(i);
ATNState *returnState = atn.states[returnStateNumber];
// All states must have single outgoing epsilon edge.
if (returnState->transitions.size() != 1 || !returnState->transitions[0]->isEpsilon())
{
return false;
}
// Look for prefix op case like 'not expr', (' type ')' expr
ATNState *returnStateTarget = returnState->transitions[0]->target;
if (returnState->getStateType() == ATNState::BLOCK_END && returnStateTarget == p) {
continue;
}
// Look for 'expr op expr' or case where expr's return state is block end
// of (...)* internal block; the block end points to loop back
// which points to p but we don't need to check that
if (returnState == blockEndState) {
continue;
}
// Look for ternary expr ? expr : expr. The return state points at block end,
// which points at loop entry state
if (returnStateTarget == blockEndState) {
continue;
}
// Look for complex prefix 'between expr and expr' case where 2nd expr's
// return state points at block end state of (...)* internal block
if (returnStateTarget->getStateType() == ATNState::BLOCK_END &&
returnStateTarget->transitions.size() == 1 &&
returnStateTarget->transitions[0]->isEpsilon() &&
returnStateTarget->transitions[0]->target == p)
{
continue;
}
// Anything else ain't conforming.
return false;
}
return true;
}
std::string ParserATNSimulator::getRuleName(size_t index) {
if (parser != nullptr) {
return parser->getRuleNames()[index];
}
return "<rule " + std::to_string(index) + ">";
}
Ref<ATNConfig> ParserATNSimulator::getEpsilonTarget(Ref<ATNConfig> const& config, Transition *t, bool collectPredicates,
bool inContext, bool fullCtx, bool treatEofAsEpsilon) {
switch (t->getSerializationType()) {
case Transition::RULE:
return ruleTransition(config, static_cast<RuleTransition*>(t));
case Transition::PRECEDENCE:
return precedenceTransition(config, static_cast<PrecedencePredicateTransition*>(t), collectPredicates, inContext, fullCtx);
case Transition::PREDICATE:
return predTransition(config, static_cast<PredicateTransition*>(t), collectPredicates, inContext, fullCtx);
case Transition::ACTION:
return actionTransition(config, static_cast<ActionTransition*>(t));
case Transition::EPSILON:
return std::make_shared<ATNConfig>(config, t->target);
case Transition::ATOM:
case Transition::RANGE:
case Transition::SET:
// EOF transitions act like epsilon transitions after the first EOF
// transition is traversed
if (treatEofAsEpsilon) {
if (t->matches(Token::EOF, 0, 1)) {
return std::make_shared<ATNConfig>(config, t->target);
}
}
return nullptr;
default:
return nullptr;
}
}
Ref<ATNConfig> ParserATNSimulator::actionTransition(Ref<ATNConfig> const& config, ActionTransition *t) {
#if DEBUG_DFA == 1
std::cout << "ACTION edge " << t->ruleIndex << ":" << t->actionIndex << std::endl;
#endif
return std::make_shared<ATNConfig>(config, t->target);
}
Ref<ATNConfig> ParserATNSimulator::precedenceTransition(Ref<ATNConfig> const& config, PrecedencePredicateTransition *pt,
bool collectPredicates, bool inContext, bool fullCtx) {
#if DEBUG_DFA == 1
std::cout << "PRED (collectPredicates=" << collectPredicates << ") " << pt->precedence << ">=_p" << ", ctx dependent=true" << std::endl;
if (parser != nullptr) {
std::cout << "context surrounding pred is " << Arrays::listToString(parser->getRuleInvocationStack(), ", ") << std::endl;
}
#endif
Ref<ATNConfig> c;
if (collectPredicates && inContext) {
Ref<SemanticContext::PrecedencePredicate> predicate = pt->getPredicate();
if (fullCtx) {
// In full context mode, we can evaluate predicates on-the-fly
// during closure, which dramatically reduces the size of
// the config sets. It also obviates the need to test predicates
// later during conflict resolution.
size_t currentPosition = _input->index();
_input->seek(_startIndex);
bool predSucceeds = evalSemanticContext(pt->getPredicate(), _outerContext, config->alt, fullCtx);
_input->seek(currentPosition);
if (predSucceeds) {
c = std::make_shared<ATNConfig>(config, pt->target); // no pred context
}
} else {
Ref<SemanticContext> newSemCtx = SemanticContext::And(config->semanticContext, predicate);
c = std::make_shared<ATNConfig>(config, pt->target, newSemCtx);
}
} else {
c = std::make_shared<ATNConfig>(config, pt->target);
}
#if DEBUG_DFA == 1
std::cout << "config from pred transition=" << c << std::endl;
#endif
return c;
}
Ref<ATNConfig> ParserATNSimulator::predTransition(Ref<ATNConfig> const& config, PredicateTransition *pt,
bool collectPredicates, bool inContext, bool fullCtx) {
#if DEBUG_DFA == 1
std::cout << "PRED (collectPredicates=" << collectPredicates << ") " << pt->ruleIndex << ":" << pt->predIndex << ", ctx dependent=" << pt->isCtxDependent << std::endl;
if (parser != nullptr) {
std::cout << "context surrounding pred is " << Arrays::listToString(parser->getRuleInvocationStack(), ", ") << std::endl;
}
#endif
Ref<ATNConfig> c = nullptr;
if (collectPredicates && (!pt->isCtxDependent || (pt->isCtxDependent && inContext))) {
Ref<SemanticContext::Predicate> predicate = pt->getPredicate();
if (fullCtx) {
// In full context mode, we can evaluate predicates on-the-fly
// during closure, which dramatically reduces the size of
// the config sets. It also obviates the need to test predicates
// later during conflict resolution.
size_t currentPosition = _input->index();
_input->seek(_startIndex);
bool predSucceeds = evalSemanticContext(pt->getPredicate(), _outerContext, config->alt, fullCtx);
_input->seek(currentPosition);
if (predSucceeds) {
c = std::make_shared<ATNConfig>(config, pt->target); // no pred context
}
} else {
Ref<SemanticContext> newSemCtx = SemanticContext::And(config->semanticContext, predicate);
c = std::make_shared<ATNConfig>(config, pt->target, newSemCtx);
}
} else {
c = std::make_shared<ATNConfig>(config, pt->target);
}
#if DEBUG_DFA == 1
std::cout << "config from pred transition=" << c << std::endl;
#endif
return c;
}
Ref<ATNConfig> ParserATNSimulator::ruleTransition(Ref<ATNConfig> const& config, RuleTransition *t) {
#if DEBUG_DFA == 1
std::cout << "CALL rule " << getRuleName(t->target->ruleIndex) << ", ctx=" << config->context << std::endl;
#endif
atn::ATNState *returnState = t->followState;
Ref<PredictionContext> newContext = SingletonPredictionContext::create(config->context, returnState->stateNumber);
return std::make_shared<ATNConfig>(config, t->target, newContext);
}
BitSet ParserATNSimulator::getConflictingAlts(ATNConfigSet *configs) {
std::vector<BitSet> altsets = PredictionModeClass::getConflictingAltSubsets(configs);
return PredictionModeClass::getAlts(altsets);
}
BitSet ParserATNSimulator::getConflictingAltsOrUniqueAlt(ATNConfigSet *configs) {
BitSet conflictingAlts;
if (configs->uniqueAlt != ATN::INVALID_ALT_NUMBER) {
conflictingAlts.set(configs->uniqueAlt);
} else {
conflictingAlts = configs->conflictingAlts;
}
return conflictingAlts;
}
std::string ParserATNSimulator::getTokenName(size_t t) {
if (t == Token::EOF) {
return "EOF";
}
const dfa::Vocabulary &vocabulary = parser != nullptr ? parser->getVocabulary() : dfa::Vocabulary::EMPTY_VOCABULARY;
std::string displayName = vocabulary.getDisplayName(t);
if (displayName == std::to_string(t)) {
return displayName;
}
return displayName + "<" + std::to_string(t) + ">";
}
std::string ParserATNSimulator::getLookaheadName(TokenStream *input) {
return getTokenName(input->LA(1));
}
void ParserATNSimulator::dumpDeadEndConfigs(NoViableAltException &nvae) {
std::cerr << "dead end configs: ";
for (auto c : nvae.getDeadEndConfigs()->configs) {
std::string trans = "no edges";
if (c->state->transitions.size() > 0) {
Transition *t = c->state->transitions[0];
if (is<AtomTransition*>(t)) {
AtomTransition *at = static_cast<AtomTransition*>(t);
trans = "Atom " + getTokenName(at->_label);
} else if (is<SetTransition*>(t)) {
SetTransition *st = static_cast<SetTransition*>(t);
bool is_not = is<NotSetTransition*>(st);
trans = (is_not ? "~" : "");
trans += "Set ";
trans += st->set.toString();
}
}
std::cerr << c->toString(true) + ":" + trans;
}
}
NoViableAltException ParserATNSimulator::noViableAlt(TokenStream *input, ParserRuleContext *outerContext,
ATNConfigSet *configs, size_t startIndex, bool deleteConfigs) {
return NoViableAltException(parser, input, input->get(startIndex), input->LT(1), configs, outerContext, deleteConfigs);
}
size_t ParserATNSimulator::getUniqueAlt(ATNConfigSet *configs) {
size_t alt = ATN::INVALID_ALT_NUMBER;
for (auto &c : configs->configs) {
if (alt == ATN::INVALID_ALT_NUMBER) {
alt = c->alt; // found first alt
} else if (c->alt != alt) {
return ATN::INVALID_ALT_NUMBER;
}
}
return alt;
}
dfa::DFAState *ParserATNSimulator::addDFAEdge(dfa::DFA &dfa, dfa::DFAState *from, ssize_t t, dfa::DFAState *to) {
#if DEBUG_DFA == 1
std::cout << "EDGE " << from << " -> " << to << " upon " << getTokenName(t) << std::endl;
#endif
if (to == nullptr) {
return nullptr;
}
_stateLock.writeLock();
to = addDFAState(dfa, to); // used existing if possible not incoming
_stateLock.writeUnlock();
if (from == nullptr || t > (int)atn.maxTokenType) {
return to;
}
{
_edgeLock.writeLock();
from->edges[t] = to; // connect
_edgeLock.writeUnlock();
}
#if DEBUG_DFA == 1
std::string dfaText;
if (parser != nullptr) {
dfaText = dfa.toString(parser->getVocabulary());
} else {
dfaText = dfa.toString(dfa::Vocabulary::EMPTY_VOCABULARY);
}
std::cout << "DFA=\n" << dfaText << std::endl;
#endif
return to;
}
dfa::DFAState *ParserATNSimulator::addDFAState(dfa::DFA &dfa, dfa::DFAState *D) {
if (D == ERROR.get()) {
return D;
}
auto existing = dfa.states.find(D);
if (existing != dfa.states.end()) {
return *existing;
}
D->stateNumber = (int)dfa.states.size();
if (!D->configs->isReadonly()) {
D->configs->optimizeConfigs(this);
D->configs->setReadonly(true);
}
dfa.states.insert(D);
#if DEBUG_DFA == 1
std::cout << "adding new DFA state: " << D << std::endl;
#endif
return D;
}
void ParserATNSimulator::reportAttemptingFullContext(dfa::DFA &dfa, const antlrcpp::BitSet &conflictingAlts,
ATNConfigSet *configs, size_t startIndex, size_t stopIndex) {
#if DEBUG_DFA == 1 || RETRY_DEBUG == 1
misc::Interval interval = misc::Interval((int)startIndex, (int)stopIndex);
std::cout << "reportAttemptingFullContext decision=" << dfa.decision << ":" << configs << ", input=" << parser->getTokenStream()->getText(interval) << std::endl;
#endif
if (parser != nullptr) {
parser->getErrorListenerDispatch().reportAttemptingFullContext(parser, dfa, startIndex, stopIndex, conflictingAlts, configs);
}
}
void ParserATNSimulator::reportContextSensitivity(dfa::DFA &dfa, size_t prediction, ATNConfigSet *configs,
size_t startIndex, size_t stopIndex) {
#if DEBUG_DFA == 1 || RETRY_DEBUG == 1
misc::Interval interval = misc::Interval(startIndex, stopIndex);
std::cout << "reportContextSensitivity decision=" << dfa.decision << ":" << configs << ", input=" << parser->getTokenStream()->getText(interval) << std::endl;
#endif
if (parser != nullptr) {
parser->getErrorListenerDispatch().reportContextSensitivity(parser, dfa, startIndex, stopIndex, prediction, configs);
}
}
void ParserATNSimulator::reportAmbiguity(dfa::DFA &dfa, dfa::DFAState * /*D*/, size_t startIndex, size_t stopIndex,
bool exact, const antlrcpp::BitSet &ambigAlts, ATNConfigSet *configs) {
#if DEBUG_DFA == 1 || RETRY_DEBUG == 1
misc::Interval interval = misc::Interval((int)startIndex, (int)stopIndex);
std::cout << "reportAmbiguity " << ambigAlts << ":" << configs << ", input=" << parser->getTokenStream()->getText(interval) << std::endl;
#endif
if (parser != nullptr) {
parser->getErrorListenerDispatch().reportAmbiguity(parser, dfa, startIndex, stopIndex, exact, ambigAlts, configs);
}
}
void ParserATNSimulator::setPredictionMode(PredictionMode newMode) {
_mode = newMode;
}
atn::PredictionMode ParserATNSimulator::getPredictionMode() {
return _mode;
}
Parser* ParserATNSimulator::getParser() {
return parser;
}
#ifdef _MSC_VER
#pragma warning (disable:4996) // 'getenv': This function or variable may be unsafe. Consider using _dupenv_s instead.
#endif
bool ParserATNSimulator::getLrLoopSetting() {
char *var = std::getenv("TURN_OFF_LR_LOOP_ENTRY_BRANCH_OPT");
if (var == nullptr)
return false;
std::string value(var);
return value == "true" || value == "1";
}
#ifdef _MSC_VER
#pragma warning (default:4996)
#endif
void ParserATNSimulator::InitializeInstanceFields() {
_mode = PredictionMode::LL;
_startIndex = 0;
}