| #------------------------------------------------------------- |
| # |
| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| # |
| #------------------------------------------------------------- |
| |
| source("nn/layers/affine.dml") as affine |
| source("nn/layers/multi_attention.dml") as attention |
| source("nn/layers/dropout.dml") as dropout |
| source("nn/layers/batch_norm1d.dml") as batch_norm |
| source("nn/layers/tanh.dml") as tanh |
| source("nn/layers/gelu.dml") as gelu |
| |
| linear_tensor_forward = function(matrix[double] X, matrix[double] W, matrix[double] b, int B, int C) |
| return (matrix[double] out) { |
| /* |
| * Helper function for computing linear layer with tensor input, of shape (A, B*C) |
| */ |
| A = nrow(X) |
| C_new = ncol(W) |
| out = affine::forward(matrix(X, rows=A*B, cols=C), W, b) |
| out = matrix(out, rows=A, cols=B*C_new) |
| } |
| |
| linear_tensor_backward = function(matrix[double] dout, matrix[double] X, matrix[double] W, matrix[double] b, int B, |
| int C_out, int C_in) |
| return (matrix[double] dX, matrix[double] dW, matrix[double] db) { |
| /* |
| * Helper function for computing linear layer with tensor input, of shape (A, B*C) |
| */ |
| A = nrow(X) |
| [dX, dW, db] = affine::backward(matrix(dout, rows=A*B, cols=C_out), matrix(X, rows=A*B, cols=C_in), W, b) |
| dX = matrix(dX, rows=A, cols=B*C_in) |
| } |
| |
| layer_norm_forward = function(matrix[double] X, matrix[double] gamma, matrix[double] beta, double epsilon, int B, int C) |
| return (matrix[double] out, matrix[double] cache_mean, matrix[double] cache_var, matrix[double] cache_norm) { |
| /* |
| * Helper function for computing layer norm via 1D batch norm with tensor input, of shpae (A, B*C) |
| */ |
| A = nrow(X) |
| batch_norm_input = t(matrix(X, rows=A*B, cols=C)) |
| # EMA matrices are unused and thus empty matrices will be provided |
| emas_mat = matrix(0, rows=1, cols=A*B) |
| [batch_norm_out, unused1, unused2, cache_mean, cache_var, cache_norm] = batch_norm::forward( |
| batch_norm_input, t(gamma), t(beta), "train", emas_mat, emas_mat, 0.0, epsilon) |
| out = matrix(t(batch_norm_out), rows=A, cols=B*C) |
| } |
| |
| layer_norm_backward = function(matrix[double] dout, matrix[double] cache_mean, matrix[double] cache_var, |
| matrix[double] cache_norm, matrix[double] X, matrix[double] gamma, matrix[double] beta, double epsilon, int B, int C) |
| return (matrix[double] dX, matrix[double] dgamma, matrix[double] dbeta) { |
| /* |
| * Helper function for computing layer norm via 1D batch norm with tensor input, of shpae (A, B*C) |
| */ |
| A = nrow(X) |
| batch_norm_input = t(matrix(X, rows=A*B, cols=C)) |
| batch_norm_doutput = t(matrix(dout, rows=A*B, cols=C)) |
| # EMA matrices, updated EMA matrices and out matrix are unused and thus empty matrices will be provided |
| empty_mat = matrix(0, rows=1, cols=1) |
| [batch_norm_dX, unused1, unused2] = batch_norm::backward( |
| batch_norm_doutput, |
| empty_mat, empty_mat, empty_mat, |
| cache_mean, cache_var, cache_norm, |
| batch_norm_input, t(gamma), t(beta), "train", empty_mat, empty_mat, 0.0, epsilon) |
| dX = matrix(t(batch_norm_dX), rows=A, cols=B*C) |
| dgamma = t(rowSums(batch_norm_doutput * cache_norm)) |
| dbeta = t(rowSums(batch_norm_doutput)) |
| } |
| |
| forward = function(matrix[double] states, |
| int H, int T, int d, int I, |
| matrix[double] W_Q, matrix[double] b_Q, |
| matrix[double] W_K, matrix[double] b_K, |
| matrix[double] W_V, matrix[double] b_V, |
| matrix[double] W_context, matrix[double] b_context, |
| matrix[double] W_intermediate, matrix[double] b_intermediate, |
| matrix[double] W_out, matrix[double] b_out, |
| double dropout_p_attention, |
| double dropout_p_output, |
| double epsilon_ln, |
| matrix[double] gamma_ln1, matrix[double] beta_ln1, |
| matrix[double] gamma_ln2, matrix[double] beta_ln2, |
| string activation) |
| return (matrix[double] out_states, matrix[double] attention, |
| list[unknown] outputs, |
| matrix[double] dropout_mask_attention, |
| matrix[double] dropout_mask_output_1, |
| matrix[double] dropout_mask_output_2, |
| matrix[double] cache_mean_ln1, matrix[double] cache_var_ln1, matrix[double] cache_norm_ln1, |
| matrix[double] cache_mean_ln2, matrix[double] cache_var_ln2, matrix[double] cache_norm_ln2) { |
| /* |
| * Computes the forward pass for a layer of the BERT transformer architecture. |
| * |
| * Inputs (B: Batch size, T: Sequence length, D: Embedding length, H: Heads): |
| * - states: Hidden states, of shape (B, T*D). |
| * - H: Head count. |
| * - T: Sequence length. |
| * - d: Embedding length of single token per head with d*H = D. |
| * - I: Intemediate embedding length. |
| * - W_Q: Weights for linear query layer, of shape (D, D). |
| * - b_Q: Biases for linear query layer, of shape (1, D). |
| * - W_K: Weights for linear key layer, of shape (D, D). |
| * - b_K: Biases for linear key layer, of shape (1, D). |
| * - W_V: Weights for linear value layer, of shape (D, D). |
| * - b_V: Biases for linear value layer, of shape (1, D). |
| * - W_context: Weights for linear output layer on context, of shape (D, D). |
| * - b_context: Biases for linear output layer on context, of shape (1, D). |
| * - W_intermediate: Weights for intermediate linear layer, of shape (D, I). |
| * - b_intermediate: Biases for intermediate linear layer, of shape (1, I). |
| * - W_out: Weights for last linear output layer, of shape (D, D). |
| * - b_out: Biases for last linear output layer, of shape (1, D). |
| * - dropout_p_attention: Probability for dropout on attention. |
| * - dropout_p_output: Probability for dropout on output. |
| * - epsilon_ln: Epsilon value for layer norm. |
| * - gamma_ln1: Gamma params for layer norm 1, of shape (1, D). |
| * - beta_ln1: Beta params for layer norm 1, of shape (1, D). |
| * - gamma_ln2: Gamma params for layer norm 2, of shape (1, D). |
| * - beta_ln2: Beta params for layer norm 2, of shape (1, D). |
| * - activation: String specifying type of activation to use. |
| * Can be tanh or gelu. |
| * |
| * Outputs: |
| * - out_states: Token output states, of shape (B, T*D) |
| * - attention: Attention values for keys & querys, of shape (B, H*T*T) |
| * - outputs: List of relevant outputs for backward pass with following |
| * order/content: |
| * -> 1: Output of linear query layer, of shape (B, T*D). |
| * -> 2: Output of linear key layer, of shape (B, T*D). |
| * -> 3: Output of linear value layer, of shape (B, T*D). |
| * -> 4: Output context of attention layer, of shape (B, T*D). |
| * -> 5: Output attention of attention layer, of shape (B, T*D). |
| * -> 6: Output of residual pass 1, of shape (B, T*D). |
| * -> 7: Output of layer norm 1, of shape (B, T*D). |
| * -> 8: Output of intermediate linear layer, of shape (B, T*I). |
| * -> 9: Output of activation layer, of shape (B, T*I). |
| * -> 10: Output of residual pass 2, of shape (B, T*D). |
| * - dropout_mask_attention: Dropout mask used on attention, of shape (B, H*T*T) |
| * - dropout_mask_output_1: Dropout mask used on attention output, of shape (B, T*D) |
| * - dropout_mask_output_2: Dropout mask used on attention output, of shape (B, T*D) |
| * - cache_mean_ln1: Cached mean from layer norm 1, of shape (1, B*T) |
| * - cache_var_ln1: Cached mean from layer norm 1, of shape (1, B*T) |
| * - cache_norm_ln1: Cached mean from layer norm 1, of shape (1, B*T) |
| * - cache_mean_ln2: Cached mean from layer norm 2, of shape (1, B*T) |
| * - cache_var_ln2: Cached mean from layer norm 2, of shape (1, B*T) |
| * - cache_norm_ln2: Cached mean from layer norm 2, of shape (1, B*T) |
| */ |
| # Embedding dim |
| D = d * H |
| |
| # Linear layers for Q, K, V |
| Q = linear_tensor_forward(states, W_Q, b_Q, T, D) # Shape (B, T*D) |
| K = linear_tensor_forward(states, W_K, b_K, T, D) # Shape (B, T*D) |
| V = linear_tensor_forward(states, W_V, b_V, T, D) # Shape (B, T*D) |
| |
| # Multi-head self attention |
| [context, attention, dropout_mask_attention] = attention::forward(Q, K, V, H, T, d, dropout_p_attention) |
| # Shapes (B, T*D), (B, H*T*T), (B, H*T*T) |
| outputs = list(Q, K, V, context, attention) |
| |
| # Linear layer on attention output (output layer) |
| out_states = linear_tensor_forward(context, W_context, b_context, T, D) # Shape (B, T*D) |
| # Dropout on output 1 |
| dropout_mask_output_1 = matrix(0, 1, 1) |
| if (dropout_p_output > 0.0) { |
| [out_states, dropout_mask_output_1] = dropout::forward(out_states, dropout_p_output, -1) |
| } |
| |
| # Residual pass 1 |
| out_states = out_states + states # Shapes (B, T*D). |
| outputs = append(outputs, out_states) |
| # Layer norm 1 for each token |
| [out_states, cache_mean_ln1, cache_var_ln1, cache_norm_ln1] = layer_norm_forward( |
| out_states, gamma_ln1, beta_ln1, epsilon_ln, T, D) |
| outputs = append(outputs, out_states) |
| |
| # Save out_states for residual pass |
| out_states_identity = out_states |
| # Linear layer of intermediate part |
| out_states = linear_tensor_forward(out_states, W_intermediate, b_intermediate, T, D) # Shape (B, T*I) |
| outputs = append(outputs, out_states) |
| # Activation |
| if (activation == "gelu") { |
| out_states = gelu::forward(out_states) |
| } else if (activation == "tanh") { |
| out_states = tanh::forward(out_states) |
| } |
| outputs = append(outputs, out_states) |
| |
| # Final linear output layer |
| out_states = linear_tensor_forward(out_states, W_out, b_out, T, I) # Shape (B, T*D) |
| # Dropout on output 2 |
| dropout_mask_output_2 = matrix(0, 1, 1) |
| if (dropout_p_output > 0.0) { |
| [out_states, dropout_mask_output_2] = dropout::forward(out_states, dropout_p_output, -1) |
| } |
| # Residual pass 2 |
| out_states = out_states + out_states_identity |
| outputs = append(outputs, out_states) |
| # Layer norm 2 for each token |
| [out_states, cache_mean_ln2, cache_var_ln2, cache_norm_ln2] = layer_norm_forward( |
| out_states, gamma_ln2, beta_ln2, epsilon_ln, T, D) |
| } |
| |
| backward = function(matrix[double] dout_states, |
| matrix[double] dropout_mask_attention, |
| matrix[double] dropout_mask_output_1, |
| matrix[double] dropout_mask_output_2, |
| matrix[double] cache_mean_ln1, matrix[double] cache_var_ln1, matrix[double] cache_norm_ln1, |
| matrix[double] cache_mean_ln2, matrix[double] cache_var_ln2, matrix[double] cache_norm_ln2, |
| list[unknown] outputs, |
| matrix[double] states, |
| int H, int T, int d, int I, |
| matrix[double] W_Q, matrix[double] b_Q, |
| matrix[double] W_K, matrix[double] b_K, |
| matrix[double] W_V, matrix[double] b_V, |
| matrix[double] W_context, matrix[double] b_context, |
| matrix[double] W_intermediate, matrix[double] b_intermediate, |
| matrix[double] W_out, matrix[double] b_out, |
| double dropout_p_attention, |
| double dropout_p_output, |
| double epsilon_ln, |
| matrix[double] gamma_ln1, matrix[double] beta_ln1, |
| matrix[double] gamma_ln2, matrix[double] beta_ln2, |
| string activation) |
| return (matrix[double] din_states, |
| matrix[double] dW_Q, matrix[double] db_Q, |
| matrix[double] dW_K, matrix[double] db_K, |
| matrix[double] dW_V, matrix[double] db_V, |
| matrix[double] dW_context, matrix[double] db_context, |
| matrix[double] dW_intermediate, matrix[double] db_intermediate, |
| matrix[double] dW_out, matrix[double] db_out, |
| matrix[double] dgamma_ln1, matrix[double] dbeta_ln1, |
| matrix[double] dgamma_ln2, matrix[double] dbeta_ln2) { |
| /* |
| * Computes the backward pass for a layer of the BERT transformer architecture. |
| * |
| * Inputs (B: Batch size, T: Sequence length, D: Embedding length, H: Heads): |
| * - dout_states: Gradients w.r.t. output states, of shape (B, T*D) |
| * - dropout_mask_attention: Dropout mask used on attention, of shape (B, H*T*T) |
| * - dropout_mask_output_1: Dropout mask used on attention output, of shape (B, T*D) |
| * - dropout_mask_output_2: Dropout mask used on attention output, of shape (B, T*D) |
| * - cache_mean_ln1: Cached mean from layer norm 1, of shape (1, B*T) |
| * - cache_var_ln1: Cached mean from layer norm 1, of shape (1, B*T) |
| * - cache_norm_ln1: Cached mean from layer norm 1, of shape (1, B*T) |
| * - cache_mean_ln2: Cached mean from layer norm 2, of shape (1, B*T) |
| * - cache_var_ln2: Cached mean from layer norm 2, of shape (1, B*T) |
| * - cache_norm_ln2: Cached mean from layer norm 2, of shape (1, B*T) |
| * - outputs: list of relevant outputs from forward pass |
| * with the following order/content: |
| * -> 1: Output of linear query layer, of shape (B, T*D). |
| * -> 2: Output of linear key layer, of shape (B, T*D). |
| * -> 3: Output of linear value layer, of shape (B, T*D). |
| * -> 4: Output context of attention layer, of shape (B, T*D). |
| * -> 5: Output attention of attention layer, of shape (B, T*D). |
| * -> 6: Output of residual pass 1, of shape (B, T*D). |
| * -> 7: Output of layer norm 1, of shape (B, T*D). |
| * -> 8: Output of intermediate linear layer, of shape (B, T*I). |
| * -> 9: Output of activation layer, of shape (B, T*I). |
| * -> 10: Output of residual pass 2, of shape (B, T*D). |
| * - states: Hidden states, of shape (B, T*D). |
| * - H: Head count. |
| * - T: Sequence length. |
| * - d: Embedding length of single token per head with d*H = D. |
| * - I: Intemediate embedding length. |
| * - W_Q: Weights for linear query layer, of shape (D, D). |
| * - b_Q: Biases for linear query layer, of shape (1, D). |
| * - W_K: Weights for linear key layer, of shape (D, D). |
| * - b_K: Biases for linear key layer, of shape (1, D). |
| * - W_V: Weights for linear value layer, of shape (D, D). |
| * - b_V: Biases for linear value layer, of shape (1, D). |
| * - W_context: Weights for linear output layer on context, of shape (D, D). |
| * - b_context: Biases for linear output layer on context, of shape (1, D). |
| * - W_intermediate: Weights for intermediate linear layer, of shape (D, I). |
| * - b_intermediate: Biases for intermediate linear layer, of shape (1, I). |
| * - W_out: Weights for last linear output layer, of shape (D, D). |
| * - b_out: Biases for last linear output layer, of shape (1, D). |
| * - dropout_p_attention: Probability for dropout on attention. |
| * - dropout_p_output: Probability for dropout on output. |
| * - epsilon_ln: Epsilon value for layer norm. |
| * - gamma_ln1: Gamma params for layer norm 1, of shape (1, D). |
| * - beta_ln1: Beta params for layer norm 1, of shape (1, D). |
| * - gamma_ln2: Gamma params for layer norm 2, of shape (1, D). |
| * - beta_ln2: Beta params for layer norm 2, of shape (1, D). |
| * - activation: String specifying type of activation to use. |
| * Can be tanh or gelu. |
| * |
| * Outputs: |
| * - din_states: Gradients w.r.t. hidden input states, of shape (B, T*D). |
| * - W_Q: Gradients w.r.t. weights for linear query layer, of shape (D, D). |
| * - b_Q: Gradients w.r.t. biases for linear query layer, of shape (1, D). |
| * - W_K: Gradients w.r.t. weights for linear key layer, of shape (D, D). |
| * - b_K: Gradients w.r.t. biases for linear key layer, of shape (1, D). |
| * - W_V: Gradients w.r.t. weights for linear value layer, of shape (D, D). |
| * - b_V: Gradients w.r.t. biases for linear value layer, of shape (1, D). |
| * - W_context: Gradients w.r.t. weights for linear output layer on context, of shape (D, D). |
| * - b_context: Gradients w.r.t. biases for linear output layer on context, of shape (1, D). |
| * - W_intermediate: Gradients w.r.t. weights for intermediate linear layer, of shape (D, I). |
| * - b_intermediate: Gradients w.r.t. biases for intermediate linear layer, of shape (1, I). |
| * - W_out: Gradients w.r.t. weights for last linear output layer, of shape (D, D). |
| * - b_out: Gradients w.r.t. biases for last linear output layer, of shape (1, D). |
| */ |
| # Embedding dim |
| D = d * H |
| |
| # Layer norm 2 for each token |
| [dout_states, dgamma_ln2, dbeta_ln2] = layer_norm_backward( |
| dout_states, cache_mean_ln2, cache_var_ln2, cache_norm_ln2, as.matrix(outputs[10]), gamma_ln2, beta_ln2, epsilon_ln, T, D) |
| # Save dout_states for residual pass |
| dout_states_identity_2 = dout_states |
| # Dropout on output 2 |
| if (dropout_p_output > 0.0) { |
| dout_states = dropout::backward(dout_states, matrix(0, 1, 1), dropout_p_output, dropout_mask_output_2) |
| } |
| # Final linear output layer |
| [dout_states, dW_out, db_out] = linear_tensor_backward(dout_states, as.matrix(outputs[9]), W_out, b_out, T, D, I) |
| |
| # Activation |
| if (activation == "gelu") { |
| dout_states = gelu::backward(dout_states, as.matrix(outputs[8])) |
| } else if (activation == "tanh") { |
| dout_states = tanh::backward(dout_states, as.matrix(outputs[8])) |
| } |
| # Linear layer of intermediate part |
| [dout_states, dW_intermediate, db_intermediate] = linear_tensor_backward(dout_states, as.matrix(outputs[7]), W_intermediate, |
| b_intermediate, T, I, D) |
| # Residual pass 2 |
| dout_states = dout_states + dout_states_identity_2 |
| |
| # Layer norm 1 for each token |
| [dout_states, dgamma_ln1, dbeta_ln1] = layer_norm_backward( |
| dout_states, cache_mean_ln1, cache_var_ln1, cache_norm_ln1, as.matrix(outputs[6]), gamma_ln1, beta_ln1, epsilon_ln, T, D) |
| # Save dout_states for residual pass |
| dout_states_identity_1 = dout_states |
| |
| # Dropout on output 1 |
| if (dropout_p_output > 0.0) { |
| dout_states = dropout::backward(dout_states, matrix(0, 1, 1), dropout_p_output, dropout_mask_output_1) |
| } |
| # Linear layer on attention output (output layer) |
| [dcontext, dW_context, db_context] = linear_tensor_backward(dout_states, as.matrix(outputs[4]), W_context, b_context, T, D, D) |
| |
| # Multi-head self attention |
| [dQ, dK, dV] = attention::backward(dcontext, dropout_mask_attention, as.matrix(outputs[5]), as.matrix(outputs[1]), |
| as.matrix(outputs[2]), as.matrix(outputs[3]), H, T, d, dropout_p_attention) |
| |
| # Linear layers for Q, K, V |
| [dstates_Q, dW_Q, db_Q] = linear_tensor_backward(dQ, states, W_Q, b_Q, T, D, D) |
| [dstates_K, dW_K, db_K] = linear_tensor_backward(dK, states, W_K, b_K, T, D, D) |
| [dstates_V, dW_V, db_V] = linear_tensor_backward(dV, states, W_V, b_V, T, D, D) |
| # Add paths + residual pass 1 |
| din_states = dstates_Q + dstates_K + dstates_V + dout_states_identity_1 |
| } |