| #------------------------------------------------------------- |
| # |
| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| # |
| #------------------------------------------------------------- |
| |
| # Robust scaling using median and IQR (Interquartile Range) |
| # Resistant to outliers by centering with the median and scaling with IQR. |
| # |
| # INPUT: |
| # ------------------------------------------------------------------------------------- |
| # X Input feature matrix of shape n-by-m |
| # ------------------------------------------------------------------------------------- |
| # |
| # OUTPUT: |
| # ------------------------------------------------------------------------------------- |
| # Y Scaled output matrix of shape n-by-m |
| # med Column medians (Q2) of shape 1-by-m |
| # q1 Column first quantiles (Q1) of shape 1-by-m |
| # q3 Column first quantiles (Q3) of shape 1-by-m |
| # ------------------------------------------------------------------------------------- |
| |
| m_scaleRobust = function(Matrix[Double] X) |
| return (Matrix[Double] Y, Matrix[Double] med, Matrix[Double] q1, Matrix[Double] q3) |
| { |
| n = nrow(X) |
| m = ncol(X) |
| |
| med = matrix(0.0, rows=1, cols=m) |
| q1 = matrix(0.0, rows=1, cols=m) |
| q3 = matrix(0.0, rows=1, cols=m) |
| |
| # Define quantile probabilities once, outside the loop |
| q_probs = as.matrix(list(0.25, 0.5, 0.75)); |
| |
| # Loop over columns to compute quantiles |
| parfor (j in 1:m) { |
| q = quantile(X[,j], q_probs) |
| med[1,j] = q[2,1] |
| q1[1,j] = q[1,1] |
| q3[1,j] = q[3,1] |
| } |
| |
| Y = scaleRobustApply(X, med, q1, q3); |
| } |