| #------------------------------------------------------------- |
| # |
| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| # |
| #------------------------------------------------------------- |
| |
| # This builtin function implements a multi-class Support Vector Machine (SVM) |
| # with squared slack variables. The trained model comprises #classes |
| # one-against-the-rest binary-class l2svm classification models. |
| # |
| # INPUT: |
| #------------------------------------------------------------------------------- |
| # X Feature matrix X (shape: m x n) |
| # Y Label vector y of class labels (shape: m x 1), |
| # where max(Y) is assumed to be the number of classes |
| # intercept Indicator if a bias column should be added to X and the model |
| # epsilon Tolerance for early termination if the reduction of objective |
| # function is less than epsilon times the initial objective |
| # reg Regularization parameter (lambda) for L2 regularization |
| # maxIterations Maximum number of conjugate gradient (outer l2svm) iterations |
| # verbose Indicator if training details should be printed |
| # ------------------------------------------------------------------------------ |
| # |
| # OUTPUT: |
| #------------------------------------------------------------------------------- |
| # model Trained model/weights (shape: n x max(Y), w/ intercept: n+1) |
| #------------------------------------------------------------------------------- |
| |
| m_msvm = function(Matrix[Double] X, Matrix[Double] Y, Boolean intercept = FALSE, |
| Double epsilon = 0.001, Double reg = 1.0, Integer maxIterations = 100, |
| Boolean verbose = FALSE) |
| return(Matrix[Double] model) |
| { |
| if(min(Y) < 0) |
| stop("MSVM: Invalid Y input, containing negative values") |
| if(verbose) |
| print("Running Multiclass-SVM") |
| # Robustness for datasets with missing values (causing NaN gradients) |
| numNaNs = sum(isNaN(X)) |
| if( numNaNs > 0 ) { |
| print("msvm: matrix X contains "+numNaNs+" missing values, replacing with 0.") |
| X = replace(target=X, pattern=NaN, replacement=0); |
| } |
| # append once, and call l2svm always with intercept=FALSE |
| if(intercept) { |
| ones = matrix(1, rows=nrow(X), cols=1) |
| X = cbind(X, ones); |
| } |
| |
| if(ncol(Y) > 1) |
| Y = rowIndexMax(Y) |
| |
| # Assuming number of classes to be max contained in Y |
| w = matrix(0, rows=ncol(X), cols=max(Y)) |
| |
| parfor(class in 1:max(Y)) { |
| # extract the class' binary labels and convert to -1/+1 |
| Y_local = 2 * (Y == class) - 1 |
| # train l2svm model with robustness for non-existing classes |
| nnzY = sum(Y == class); |
| if( nnzY > 0 ) { |
| w[,class] = l2svm(X=X, Y=Y_local, intercept=FALSE, |
| epsilon=epsilon, reg=reg, maxIterations=maxIterations, |
| verbose=verbose, columnId=class) |
| } |
| else { |
| w[,class] = matrix(-Inf, ncol(X), 1); |
| } |
| } |
| |
| model = w |
| } |