blob: 6c017e2f0bb048cfee508c3d580ce119de1d6e55 [file] [log] [blame]
#-------------------------------------------------------------
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
#-------------------------------------------------------------
# The lmPredict-function predicts the class of a feature vector
#
# INPUT:
# --------------------------------------------------------------------------------------
# X Matrix of feature vectors
# B 1-column matrix of weights.
# ytest test labels, used only for verbose output. can be set to matrix(0,1,1)
# if verbose output is not wanted
# icpt Intercept presence, shifting and rescaling the columns of X
# verbose If TRUE print messages are activated
# --------------------------------------------------------------------------------------
#
# OUTPUT:
# -----------------------------------------------------------------------------------
# yhat 1-column matrix of classes
# -----------------------------------------------------------------------------------
m_lmPredict = function(Matrix[Double] X, Matrix[Double] B,
Matrix[Double] ytest = matrix(0,1,1), Integer icpt = 0, Boolean verbose = FALSE)
return (Matrix[Double] yhat)
{
intercept = ifelse(icpt>0 | ncol(X)+1==nrow(B), as.scalar(B[nrow(B),]), 0);
yhat = X %*% B[1:ncol(X),] + intercept;
if( verbose )
lmPredictStats(yhat, ytest, TRUE);
}