blob: 8d1420a085b46a3ab98fbce8450953de8590215a [file] [log] [blame]
#-------------------------------------------------------------
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
#-------------------------------------------------------------
# This built-in function computes the false discovery rate
# for all classes as false-predictions / all-predictions.
#
# INPUT:
# ------------------------------------------------------------------------------
# P vector of predictions (1-based, recoded), shape: [N x 1]
# Y vector of actual labels (1-based, recoded), shape: [N x 1]
# ------------------------------------------------------------------------------
#
# OUTPUT:
# ------------------------------------------------------------------------------
# FDR vector of false discovery rate per class, shape: [M x 1]
# ------------------------------------------------------------------------------
m_fdr = function(Matrix[Double] P, Matrix[Double] Y)
return (Matrix[Double] FDR)
{
[cS, cA] = confusionMatrix(P, Y);
FDR = (rowSums(cS)-diag(cS)) / rowSums(cS);
}