| #------------------------------------------------------------- |
| # |
| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| # |
| #------------------------------------------------------------- |
| |
| # Computes the F1 score as the harmonic mean of precision and recall. |
| # F1 = 2TP / (2TP + FP + FN) |
| # |
| # INPUT: |
| # ------------------------------------------------------------------------------ |
| # P vector of predictions (1-based, recoded) |
| # Y vector of actual labels (1-based, recoded) |
| # ------------------------------------------------------------------------------ |
| # |
| # OUTPUT: |
| # ------------------------------------------------------------------------------ |
| # score the F1 score |
| # ------------------------------------------------------------------------------ |
| |
| m_f1Score = function(Matrix[Double] P, Matrix[Double] Y) |
| return(Double score) |
| { |
| [cS, cA] = confusionMatrix(P, Y); |
| if(nrow(cS)>2 | ncol(cS)>2) |
| stop("f1Score: currently only supported for binary class labels."); |
| score = as.scalar(2*cS[1,1] / (2*cS[1,1] + cS[2,1] + cS[1,2])); |
| } |