| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| package org.apache.sysds.runtime.compress.colgroup.functional; |
| |
| import org.apache.sysds.runtime.compress.DMLCompressionException; |
| import org.apache.sysds.runtime.compress.colgroup.indexes.IColIndex; |
| import org.apache.sysds.runtime.compress.readers.ReaderColumnSelection; |
| import org.apache.sysds.runtime.compress.utils.DblArray; |
| import org.apache.sysds.runtime.matrix.data.MatrixBlock; |
| |
| public interface LinearRegression { |
| |
| public static double[] regressMatrixBlock(MatrixBlock rawBlock, IColIndex colIndexes, boolean transposed) { |
| final int nRows = transposed ? rawBlock.getNumColumns() : rawBlock.getNumRows(); |
| final int nCol = colIndexes.size(); |
| if(nRows <= 1) |
| throw new DMLCompressionException("At least 2 data points are required to fit a linear function."); |
| else if(nCol < 1) |
| throw new DMLCompressionException("At least 1 column must be specified for compression."); |
| |
| // the first `nCol` entries represent the intercepts (beta0) |
| // the second `nCol` entries represent the slopes (beta1) |
| final double[] beta0_beta1 = new double[2 * nCol]; |
| |
| final double s_xx = (Math.pow(nRows, 3) - nRows) / 12; |
| final double x_bar = (double) (nRows + 1) / 2; |
| |
| final double[] colSums = new double[nCol]; |
| final double[] weightedColSums = new double[nCol]; |
| |
| if(nCol == 1) { |
| if(transposed) { |
| for(int rowIdx = 0; rowIdx < nRows; rowIdx++) { |
| double value = rawBlock.getValue(colIndexes.get(0), rowIdx); |
| colSums[0] += value; |
| weightedColSums[0] += (rowIdx + 1) * value; |
| } |
| } |
| else { |
| for(int rowIdx = 0; rowIdx < nRows; rowIdx++) { |
| double value = rawBlock.getValue(rowIdx, colIndexes.get(0)); |
| colSums[0] += value; |
| weightedColSums[0] += (rowIdx + 1) * value; |
| } |
| } |
| } |
| else { |
| final ReaderColumnSelection reader = ReaderColumnSelection.createReader(rawBlock, colIndexes, transposed); |
| |
| DblArray cellVals; |
| while((cellVals = reader.nextRow()) != null) { |
| int rowIdx = reader.getCurrentRowIndex() + 1; |
| double[] row = cellVals.getData(); |
| |
| for(int i = 0; i < nCol; i++) { |
| colSums[i] += row[i]; |
| weightedColSums[i] += rowIdx * row[i]; |
| } |
| } |
| } |
| |
| for(int i = 0; i < nCol; i++) { |
| beta0_beta1[nCol + i] = (-x_bar * colSums[i] + weightedColSums[i]) / s_xx; |
| beta0_beta1[i] = (colSums[i] / nRows) - beta0_beta1[nCol + i] * x_bar; |
| } |
| |
| return beta0_beta1; |
| } |
| } |