blob: 84eee6379effe84a22ee853a9e032e388cd5b59a [file] [log] [blame]
#-------------------------------------------------------------
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
#-------------------------------------------------------------
# The Image Transform function applies an affine transformation to an image.
# Optionally resizes the image (without scaling).
# Uses nearest neighbor sampling.
#
# INPUT:
# -------------------------------------------------------------------------------------------
# img_in Input image as 2D matrix with top left corner at [1, 1]
# out_w Width of the output image
# out_h Height of the output image
# a,b,c,d,e,f The first two rows of the affine matrix in row-major order
# fill_value The background of the image
# -------------------------------------------------------------------------------------------
#
# OUTPUT:
# ---------------------------------------------------------------------------------------
# img_out Output image as 2D matrix with top left corner at [1, 1]
# ---------------------------------------------------------------------------------------
m_img_transform = function(Matrix[Double] img_in, Integer out_w, Integer out_h, Double a, Double b, Double c, Double d,
Double e, Double f, Double fill_value) return (Matrix[Double] img_out) {
divisor = a * e - b * d
if(divisor == 0) {
print("Inverse matrix does not exist! Returning input.")
img_out = img_in
}
else {
orig_w = ncol(img_in)
orig_h = nrow(img_in)
# inverted transformation matrix
# inversion is necessary because we compute the sampling position of pixels in the output image
# and not the output coordinates of input pixels
T_inv = matrix(0, rows=3, cols=3)
T_inv[1, 1] = e / divisor
T_inv[1, 2] = -b / divisor
T_inv[1, 3] = (b * f - c * e) / divisor
T_inv[2, 1] = -d / divisor
T_inv[2, 2] = a / divisor
T_inv[2, 3] = (c * d - a * f) / divisor
T_inv[3, 3] = 1
# coordinates of output pixel-centers linearized in row-major order
coords = matrix(1, rows=3, cols=out_w*out_h)
coords[1,] = t((seq(0, out_w*out_h-1) %% out_w) + 0.5)
coords[2,] = t((seq(0, out_w*out_h-1) %/% out_w) + 0.5)
# compute sampling pixel indices
coords = floor(T_inv %*% coords) + 1
# fill output image
img_out = matrix(fill_value, rows=out_w*out_h, cols=1)
parfor (cell in 1:(out_w*out_h)) {
inx = as.scalar(coords[1, cell])
iny = as.scalar(coords[2, cell])
if ((0 < inx) & (inx <= orig_w) & (0 < iny) & (iny <= orig_h))
img_out[cell] = img_in[iny, inx]
}
# TODO replace above loop with following vectorized code
# but additional size mismatch / fill handling necessary
# ---
# P = order(target=t(coords), by=matrix("1 2",1,2), index.return=TRUE);
# inx = t(coords[1,]);
# iny = t(coords[2,]);
# vals = P %*% matrix(img_in, out_w*out_h, 1);
# img_out = ((0<inx) & (inx<=orig_w) & (0<iny) & (iny<=orig_h)) * vals;
# reshape output
img_out = matrix(img_out, rows=out_h, cols=out_w)
}
}