blob: 09227b2e1fb7d83d8a48e625ed36fa07400ff33c [file] [log] [blame]
#-------------------------------------------------------------
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
#-------------------------------------------------------------
# function Weight of evidence / information gain apply on new data
#
# INPUT:
# --------------------------------------------------
# X ---
# Y ---
# entropyMatrix ---
# --------------------------------------------------
#
# OUTPUT:
# ------------------------------------------------
# F Weighted X matrix where the entropy mask is applied
# ------------------------------------------------
m_WoEApply = function(Matrix[Double] X, Matrix[Double] Y, Matrix[Double] entropyMatrix)
return (Matrix[Double] F) {
F = matrix(1, nrow(X), ncol(X)) # allocate dense output matrix
for(i in 1:ncol(X))
{
if(sum(abs(entropyMatrix[i])) > 0)
{
L = replace(target=X[, i], pattern=NaN, replacement=1)
idx = min(ncol(entropyMatrix), max(L))
entropy = entropyMatrix[i, 1:idx]
resp = matrix(0, nrow(L), idx)
resp = (resp + t(seq(1, idx))) == L
resp = resp * entropy
F[, i] = rowSums(resp)
}
}
}