blob: 213f373b1b93dbdb7b78596c0506da666486ce87 [file] [log] [blame]
#-------------------------------------------------------------
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
#-------------------------------------------------------------
#
# THIS SCRIPT CHOOSES A GLM REGRESSION MODEL IN A STEPWISE ALGIRITHM USING AIC
# EACH GLM REGRESSION IS SOLVED USING NEWTON/FISHER SCORING WITH TRUST REGIONS
#
# INPUT PARAMETERS:
# ---------------------------------------------------------------------------------------------
# NAME TYPE DEFAULT MEANING
# ---------------------------------------------------------------------------------------------
# X String --- Location to read the matrix X of feature vectors
# Y String --- Location to read response matrix Y with 1 column
# B String --- Location to store estimated regression parameters (the betas)
# S String --- Location to write the selected features ordered as computed by the algorithm
# O String " " Location to write the printed statistics; by default is standard output
# link Int 2 Link function code: 1 = log, 2 = Logit, 3 = Probit, 4 = Cloglog
# yneg Double 0.0 Response value for Bernoulli "No" label, usually 0.0 or -1.0
# icpt Int 0 Intercept presence, X columns shifting and rescaling:
# 0 = no intercept, no shifting, no rescaling;
# 1 = add intercept, but neither shift nor rescale X;
# 2 = add intercept, shift & rescale X columns to mean = 0, variance = 1
# tol Double 0.000001 Tolerance (epsilon)
# disp Double 0.0 (Over-)dispersion value, or 0.0 to estimate it from data
# moi Int 200 Maximum number of outer (Newton / Fisher Scoring) iterations
# mii Int 0 Maximum number of inner (Conjugate Gradient) iterations, 0 = no maximum
# thr Double 0.01 Threshold to stop the algorithm: if the decrease in the value of AIC falls below thr
# no further features are being checked and the algorithm stops
# fmt String "text" The betas matrix output format, such as "text" or "csv"
# ---------------------------------------------------------------------------------------------
# OUTPUT: Matrix beta, whose size depends on icpt:
# icpt=0: ncol(X) x 1; icpt=1: (ncol(X) + 1) x 1; icpt=2: (ncol(X) + 1) x 2
#
# In addition, in the last run of GLM some statistics are provided in CSV format, one comma-separated name-value
# pair per each line, as follows:
#
# NAME MEANING
# -------------------------------------------------------------------------------------------
# TERMINATION_CODE A positive integer indicating success/failure as follows:
# 1 = Converged successfully; 2 = Maximum number of iterations reached;
# 3 = Input (X, Y) out of range; 4 = Distribution/link is not supported
# BETA_MIN Smallest beta value (regression coefficient), excluding the intercept
# BETA_MIN_INDEX Column index for the smallest beta value
# BETA_MAX Largest beta value (regression coefficient), excluding the intercept
# BETA_MAX_INDEX Column index for the largest beta value
# INTERCEPT Intercept value, or NaN if there is no intercept (if icpt=0)
# DISPERSION Dispersion used to scale deviance, provided as "disp" input parameter
# or estimated (same as DISPERSION_EST) if the "disp" parameter is <= 0
# DISPERSION_EST Dispersion estimated from the dataset
# DEVIANCE_UNSCALED Deviance from the saturated model, assuming dispersion == 1.0
# DEVIANCE_SCALED Deviance from the saturated model, scaled by the DISPERSION value
# -------------------------------------------------------------------------------------------
#
# HOW TO INVOKE THIS SCRIPT - EXAMPLE:
# hadoop jar SystemDS.jar -f StepGLM.dml -nvargs X=INPUT_DIR/X Y=INPUT_DIR/Y B=OUTPUT_DIR/betas
# S=OUTPUT_DIR_S/selected O=OUTPUT_DIR/stats link=2 yneg=-1.0 icpt=2 tol=0.00000001
# disp=1.0 moi=100 mii=10 thr=0.01 fmt=csv
#
# THE StepGLM SCRIPT CURRENTLY SUPPORTS BERNOULLI DISTRIBUTION FAMILY AND THE FOLLOWING LINK FUNCTIONS ONLY!
# - LOG
# - LOGIT
# - PROBIT
# - CLOGLOG
fileX = $X;
fileY = $Y;
fileB = $B;
intercept_status = ifdef ($icpt, 0);
thr = ifdef ($thr, 0.01);
bernoulli_No_label = ifdef ($yneg, 0.0); # $yneg = 0.0;
distribution_type = 2;
bernoulli_No_label = as.double (bernoulli_No_label);
# currently only the forward selection strategy in supported: start from one feature and iteratively add
# features until AIC improves
dir = "forward";
print("BEGIN STEPWISE GLM SCRIPT");
print ("Reading X and Y...");
X_orig = read (fileX);
Y = read (fileY);
if (distribution_type == 2 & ncol(Y) == 1) {
is_Y_negative = (Y == bernoulli_No_label);
Y = cbind (1 - is_Y_negative, is_Y_negative);
count_Y_negative = sum (is_Y_negative);
if (count_Y_negative == 0) {
stop ("StepGLM Input Error: all Y-values encode Bernoulli YES-label, none encode NO-label");
}
if (count_Y_negative == nrow(Y)) {
stop ("StepGLM Input Error: all Y-values encode Bernoulli NO-label, none encode YES-label");
}
}
num_records = nrow (X_orig);
num_features = ncol (X_orig);
# BEGIN STEPWISE GENERALIZED LINEAR MODELS
if (dir == "forward") {
continue = TRUE;
columns_fixed = matrix (0, rows = 1, cols = num_features);
columns_fixed_ordered = matrix (0, rows = 1, cols = 1);
# X_global stores the best model found at each step
X_global = matrix (0, rows = num_records, cols = 1);
if (intercept_status == 0) {
# Compute AIC of an empty model with no features and no intercept (all Ys are zero)
[AIC_best] = glm_fit (X_global, Y, 0, num_features, columns_fixed_ordered, " ");
} else {
# compute AIC of an empty model with only intercept (all Ys are constant)
all_ones = matrix (1, rows = num_records, cols = 1);
[AIC_best] = glm_fit (all_ones, Y, 0, num_features, columns_fixed_ordered, " ");
}
print ("Best AIC without any features: " + AIC_best);
# First pass to examine single features
AICs = matrix (AIC_best, rows = 1, cols = num_features);
parfor (i in 1:num_features) {
[AIC_1] = glm_fit (X_orig[,i], Y, intercept_status, num_features, columns_fixed_ordered, " ");
AICs[1,i] = AIC_1;
}
# Determine the best AIC
column_best = 0;
for (k in 1:num_features) {
AIC_cur = as.scalar (AICs[1,k]);
if ( (AIC_cur < AIC_best) & ((AIC_best - AIC_cur) > abs (thr * AIC_best)) ) {
column_best = k;
AIC_best = as.scalar(AICs[1,k]);
}
}
if (column_best == 0) {
print ("AIC of an empty model is " + AIC_best + " and adding no feature achieves more than " + (thr * 100) + "% decrease in AIC!");
if (intercept_status == 0) {
# Compute AIC of an empty model with no features and no intercept (all Ys are zero)
[AIC_best] = glm_fit (X_global, Y, 0, num_features, columns_fixed_ordered, fileB);
} else {
# compute AIC of an empty model with only intercept (all Ys are constant)
###all_ones = matrix (1, rows = num_records, cols = 1);
[AIC_best] = glm_fit (all_ones, Y, 0, num_features, columns_fixed_ordered, fileB);
}
};
print ("Best AIC " + AIC_best + " achieved with feature: " + column_best);
columns_fixed[1,column_best] = 1;
columns_fixed_ordered[1,1] = column_best;
X_global = X_orig[,column_best];
while (continue) {
# Subsequent passes over the features
parfor (i in 1:num_features) {
if (as.scalar(columns_fixed[1,i]) == 0) {
# Construct the feature matrix
X = cbind (X_global, X_orig[,i]);
[AIC_2] = glm_fit (X, Y, intercept_status, num_features, columns_fixed_ordered, " ");
AICs[1,i] = AIC_2;
}
}
# Determine the best AIC
for (k in 1:num_features) {
AIC_cur = as.scalar (AICs[1,k]);
if ( (AIC_cur < AIC_best) & ((AIC_best - AIC_cur) > abs (thr * AIC_best)) & (as.scalar(columns_fixed[1,k]) == 0) ) {
column_best = k;
AIC_best = as.scalar(AICs[1,k]);
}
}
# cbind best found features (i.e., columns) to X_global
if (as.scalar(columns_fixed[1,column_best]) == 0) { # new best feature found
print ("Best AIC " + AIC_best + " achieved with feature: " + column_best);
columns_fixed[1,column_best] = 1;
columns_fixed_ordered = cbind (columns_fixed_ordered, as.matrix(column_best));
if (ncol(columns_fixed_ordered) == num_features) { # all features examined
X_global = cbind (X_global, X_orig[,column_best]);
continue = FALSE;
} else {
X_global = cbind (X_global, X_orig[,column_best]);
}
} else {
continue = FALSE;
}
}
# run GLM with selected set of features
print ("Running GLM with selected features...");
[AIC] = glm_fit (X_global, Y, intercept_status, num_features, columns_fixed_ordered, fileB);
} else {
stop ("Currently only forward selection strategy is supported!");
}
################### UDFS USED IN THIS SCRIPT ##################
glm_fit = function (Matrix[Double] X, Matrix[Double] Y, Int intercept_status, Double num_features_orig, Matrix[Double] Selected, String fileB) return (Double AIC) {
# distribution family code: 1 = Power, 2 = Bernoulli/Binomial; currently only Bernouli distribution family is supported!
distribution_type = 2; # $dfam = 2;
variance_as_power_of_the_mean = 0.0; # $vpow = 0.0;
# link function code: 0 = canonical (depends on distribution), 1 = Power, 2 = Logit, 3 = Probit, 4 = Cloglog, 5 = Cauchit;
# currently only log (link = 1), logit (link = 2), probit (link = 3), and cloglog (link = 4) are supported!
link_type = ifdef ($link, 2); # $link = 2;
link_as_power_of_the_mean = 0.0; # $lpow = 0.0;
dispersion = ifdef ($disp, 0.0); # $disp = 0.0;
eps = ifdef ($tol, 0.000001); # $tol = 0.000001;
max_iteration_IRLS = ifdef ($moi, 200); # $moi = 200;
max_iteration_CG = ifdef ($mii, 0); # $mii = 0;
variance_as_power_of_the_mean = as.double (variance_as_power_of_the_mean);
link_as_power_of_the_mean = as.double (link_as_power_of_the_mean);
dispersion = as.double (dispersion);
eps = as.double (eps);
# Default values for output statistics:
regularization = 0.0;
termination_code = 0.0;
min_beta = NaN;
i_min_beta = NaN;
max_beta = NaN;
i_max_beta = NaN;
intercept_value = NaN;
dispersion = NaN;
estimated_dispersion = NaN;
deviance_nodisp = NaN;
deviance = NaN;
##### INITIALIZE THE PARAMETERS #####
num_records = nrow (X);
num_features = ncol (X);
zeros_r = matrix (0, rows = num_records, cols = 1);
ones_r = 1 + zeros_r;
# Introduce the intercept, shift and rescale the columns of X if needed
if (intercept_status == 1 | intercept_status == 2) { # add the intercept column
X = cbind (X, ones_r);
num_features = ncol (X);
}
scale_lambda = matrix (1, rows = num_features, cols = 1);
if (intercept_status == 1 | intercept_status == 2) {
scale_lambda [num_features, 1] = 0;
}
if (intercept_status == 2) { # scale-&-shift X columns to mean 0, variance 1
# Important assumption: X [, num_features] = ones_r
avg_X_cols = t(colSums(X)) / num_records;
var_X_cols = (t(colSums (X ^ 2)) - num_records * (avg_X_cols ^ 2)) / (num_records - 1);
is_unsafe = (var_X_cols <= 0);
scale_X = 1.0 / sqrt (var_X_cols * (1 - is_unsafe) + is_unsafe);
scale_X [num_features, 1] = 1;
shift_X = - avg_X_cols * scale_X;
shift_X [num_features, 1] = 0;
rowSums_X_sq = (X ^ 2) %*% (scale_X ^ 2) + X %*% (2 * scale_X * shift_X) + sum (shift_X ^ 2);
} else {
scale_X = matrix (1, rows = num_features, cols = 1);
shift_X = matrix (0, rows = num_features, cols = 1);
rowSums_X_sq = rowSums (X ^ 2);
}
# Henceforth we replace "X" with "X %*% (SHIFT/SCALE TRANSFORM)" and rowSums(X ^ 2)
# with "rowSums_X_sq" in order to preserve the sparsity of X under shift and scale.
# The transform is then associatively applied to the other side of the expression,
# and is rewritten via "scale_X" and "shift_X" as follows:
#
# ssX_A = (SHIFT/SCALE TRANSFORM) %*% A --- is rewritten as:
# ssX_A = diag (scale_X) %*% A;
# ssX_A [num_features, ] = ssX_A [num_features, ] + t(shift_X) %*% A;
#
# tssX_A = t(SHIFT/SCALE TRANSFORM) %*% A --- is rewritten as:
# tssX_A = diag (scale_X) %*% A + shift_X %*% A [num_features, ];
# Initialize other input-dependent parameters
lambda = scale_lambda * regularization;
if (max_iteration_CG == 0) {
max_iteration_CG = num_features;
}
# Set up the canonical link, if requested [Then we have: Var(mu) * (d link / d mu) = const]
if (link_type == 0) {
if (distribution_type == 1) {
link_type = 1;
link_as_power_of_the_mean = 1.0 - variance_as_power_of_the_mean;
} else {
if (distribution_type == 2) {
link_type = 2;
}
}
}
# For power distributions and/or links, we use two constants,
# "variance as power of the mean" and "link_as_power_of_the_mean",
# to specify the variance and the link as arbitrary powers of the
# mean. However, the variance-powers of 1.0 (Poisson family) and
# 2.0 (Gamma family) have to be treated as special cases, because
# these values integrate into logarithms. The link-power of 0.0
# is also special as it represents the logarithm link.
num_response_columns = ncol (Y);
is_supported = 0;
if (num_response_columns == 2 & distribution_type == 2 & link_type >= 1 & link_type <= 4) { # BERNOULLI DISTRIBUTION
is_supported = 1;
}
if (num_response_columns == 1 & distribution_type == 2) {
print ("Error: Bernoulli response matrix has not been converted into two-column format.");
}
if (is_supported == 1) {
##### INITIALIZE THE BETAS #####
[beta, saturated_log_l, isNaN] =
glm_initialize (X, Y, distribution_type, variance_as_power_of_the_mean, link_type, link_as_power_of_the_mean, intercept_status, max_iteration_CG);
# print(" --- saturated logLik " + saturated_log_l);
if (isNaN == 0) {
##### START OF THE MAIN PART #####
sum_X_sq = sum (rowSums_X_sq);
trust_delta = 0.5 * sqrt (num_features) / max (sqrt (rowSums_X_sq));
### max_trust_delta = trust_delta * 10000.0;
log_l = 0.0;
deviance_nodisp = 0.0;
new_deviance_nodisp = 0.0;
isNaN_log_l = 2;
newbeta = beta;
g = matrix (0.0, rows = num_features, cols = 1);
g_norm = sqrt (sum ((g + lambda * beta) ^ 2));
accept_new_beta = 1;
reached_trust_boundary = 0;
neg_log_l_change_predicted = 0.0;
i_IRLS = 0;
# print ("BEGIN IRLS ITERATIONS...");
ssX_newbeta = diag (scale_X) %*% newbeta;
ssX_newbeta [num_features, ] = ssX_newbeta [num_features, ] + t(shift_X) %*% newbeta;
all_linear_terms = X %*% ssX_newbeta;
[new_log_l, isNaN_new_log_l] = glm_log_likelihood_part
(all_linear_terms, Y, distribution_type, variance_as_power_of_the_mean, link_type, link_as_power_of_the_mean);
if (isNaN_new_log_l == 0) {
new_deviance_nodisp = 2.0 * (saturated_log_l - new_log_l);
new_log_l = new_log_l - 0.5 * sum (lambda * newbeta ^ 2);
}
while (termination_code == 0) {
accept_new_beta = 1;
if (i_IRLS > 0) {
if (isNaN_log_l == 0) {
accept_new_beta = 0;
}
# Decide whether to accept a new iteration point and update the trust region
# See Alg. 4.1 on p. 69 of "Numerical Optimization" 2nd ed. by Nocedal and Wright
rho = (- new_log_l + log_l) / neg_log_l_change_predicted;
if (rho < 0.25 | isNaN_new_log_l == 1) {
trust_delta = 0.25 * trust_delta;
}
if (rho > 0.75 & isNaN_new_log_l == 0 & reached_trust_boundary == 1) {
trust_delta = 2 * trust_delta;
### if (trust_delta > max_trust_delta) {
### trust_delta = max_trust_delta;
### }
}
if (rho > 0.1 & isNaN_new_log_l == 0) {
accept_new_beta = 1;
}
}
if (accept_new_beta == 1) {
beta = newbeta; log_l = new_log_l; deviance_nodisp = new_deviance_nodisp; isNaN_log_l = isNaN_new_log_l;
[g_Y, w] = glm_dist (all_linear_terms, Y, distribution_type, variance_as_power_of_the_mean, link_type, link_as_power_of_the_mean);
# We introduced these variables to avoid roundoff errors:
# g_Y = y_residual / (y_var * link_grad);
# w = 1.0 / (y_var * link_grad * link_grad);
gXY = - t(X) %*% g_Y;
g = diag (scale_X) %*% gXY + shift_X %*% gXY [num_features, ];
g_norm = sqrt (sum ((g + lambda * beta) ^ 2));
}
[z, neg_log_l_change_predicted, num_CG_iters, reached_trust_boundary] =
get_CG_Steihaug_point (X, scale_X, shift_X, w, g, beta, lambda, trust_delta, max_iteration_CG);
newbeta = beta + z;
ssX_newbeta = diag (scale_X) %*% newbeta;
ssX_newbeta [num_features, ] = ssX_newbeta [num_features, ] + t(shift_X) %*% newbeta;
all_linear_terms = X %*% ssX_newbeta;
[new_log_l, isNaN_new_log_l] = glm_log_likelihood_part
(all_linear_terms, Y, distribution_type, variance_as_power_of_the_mean, link_type, link_as_power_of_the_mean);
if (isNaN_new_log_l == 0) {
new_deviance_nodisp = 2.0 * (saturated_log_l - new_log_l);
new_log_l = new_log_l - 0.5 * sum (lambda * newbeta ^ 2);
}
log_l_change = new_log_l - log_l; # R's criterion for termination: |dev - devold|/(|dev| + 0.1) < eps
if (reached_trust_boundary == 0 & isNaN_new_log_l == 0 &
(2.0 * abs (log_l_change) < eps * (deviance_nodisp + 0.1) | abs (log_l_change) < (abs (log_l) + abs (new_log_l)) * 0.00000000000001) ) {
termination_code = 1;
}
rho = - log_l_change / neg_log_l_change_predicted;
z_norm = sqrt (sum (z * z));
i_IRLS = i_IRLS + 1;
if (i_IRLS == max_iteration_IRLS) {
termination_code = 2;
}
}
beta = newbeta;
log_l = new_log_l;
deviance_nodisp = new_deviance_nodisp;
#---------------------------- last part
if (termination_code != 1) {
print ("One of the runs of GLM did not converged in " + i_IRLS + " steps!");
}
##### COMPUTE AIC #####
if (distribution_type == 2 & link_type >= 1 & link_type <= 4) {
AIC = -2 * log_l;
if (sum (X) != 0) {
AIC = AIC + 2 * num_features;
}
} else {
stop ("Currently only the Bernoulli distribution family the following link functions are supported: log, logit, probit, and cloglog!");
}
if (fileB != " ") {
fileO = ifdef ($O, " ");
fileS = $S;
fmt = ifdef ($fmt, "text");
# Output which features give the best AIC and are being used for linear regression
write (Selected, fileS, format=fmt);
ssX_beta = diag (scale_X) %*% beta;
ssX_beta [num_features, ] = ssX_beta [num_features, ] + t(shift_X) %*% beta;
if (intercept_status == 2) {
beta_out = cbind (ssX_beta, beta);
} else {
beta_out = ssX_beta;
}
if (intercept_status == 0 & num_features == 1) {
p = sum (X == 1);
if (p == num_records) {
beta_out = beta_out[1,];
}
}
if (intercept_status == 1 | intercept_status == 2) {
intercept_value = as.scalar (beta_out [num_features, 1]);
beta_noicept = beta_out [1 : (num_features - 1), 1];
} else {
beta_noicept = beta_out [1 : num_features, 1];
}
min_beta = min (beta_noicept);
max_beta = max (beta_noicept);
tmp_i_min_beta = rowIndexMin (t(beta_noicept))
i_min_beta = as.scalar (tmp_i_min_beta [1, 1]);
tmp_i_max_beta = rowIndexMax (t(beta_noicept))
i_max_beta = as.scalar (tmp_i_max_beta [1, 1]);
##### OVER-DISPERSION PART #####
all_linear_terms = X %*% ssX_beta;
[g_Y, w] = glm_dist (all_linear_terms, Y, distribution_type, variance_as_power_of_the_mean, link_type, link_as_power_of_the_mean);
pearson_residual_sq = g_Y ^ 2 / w;
pearson_residual_sq = replace (target = pearson_residual_sq, pattern = NaN, replacement = 0);
# pearson_residual_sq = (y_residual ^ 2) / y_var;
if (num_records > num_features) {
estimated_dispersion = sum (pearson_residual_sq) / (num_records - num_features);
}
if (dispersion <= 0) {
dispersion = estimated_dispersion;
}
deviance = deviance_nodisp / dispersion;
##### END OF THE MAIN PART #####
str = "BETA_MIN," + min_beta;
str = append (str, "BETA_MIN_INDEX," + i_min_beta);
str = append (str, "BETA_MAX," + max_beta);
str = append (str, "BETA_MAX_INDEX," + i_max_beta);
str = append (str, "INTERCEPT," + intercept_value);
str = append (str, "DISPERSION," + dispersion);
str = append (str, "DISPERSION_EST," + estimated_dispersion);
str = append (str, "DEVIANCE_UNSCALED," + deviance_nodisp);
str = append (str, "DEVIANCE_SCALED," + deviance);
if (fileO != " ") {
write (str, fileO);
}
else {
print (str);
}
# Prepare the output matrix
print ("Writing the output matrix...");
if (intercept_status == 0 & num_features == 1) {
if (p == num_records) {
beta_out_tmp = matrix (0, rows = num_features_orig + 1, cols = 1);
beta_out_tmp[num_features_orig + 1,] = beta_out;
beta_out = beta_out_tmp;
write (beta_out, fileB, format=fmt);
stop ("");
} else if (sum (X) == 0){
beta_out = matrix (0, rows = num_features_orig, cols = 1);
write (beta_out, fileB, format=fmt);
stop ("");
}
}
no_selected = ncol (Selected);
max_selected = max (Selected);
last = max_selected + 1;
if (intercept_status != 0) {
Selected_ext = cbind (Selected, as.matrix (last));
P1 = table (seq (1, ncol (Selected_ext)), t(Selected_ext));
if (intercept_status == 2) {
P1_ssX_beta = P1 * ssX_beta;
P2_ssX_beta = colSums (P1_ssX_beta);
P1_beta = P1 * beta;
P2_beta = colSums (P1_beta);
if (max_selected < num_features_orig) {
P2_ssX_beta = cbind (P2_ssX_beta, matrix (0, rows=1, cols=(num_features_orig - max_selected)));
P2_beta = cbind (P2_beta, matrix (0, rows=1, cols=(num_features_orig - max_selected)));
P2_ssX_beta[1, num_features_orig+1] = P2_ssX_beta[1, max_selected + 1];
P2_ssX_beta[1, max_selected + 1] = 0;
P2_beta[1, num_features_orig+1] = P2_beta[1, max_selected + 1];
P2_beta[1, max_selected + 1] = 0;
}
beta_out = cbind (t(P2_ssX_beta), t(P2_beta));
} else {
P1_beta = P1 * beta;
P2_beta = colSums (P1_beta);
if (max_selected < num_features_orig) {
P2_beta = cbind (P2_beta, matrix (0, rows=1, cols=(num_features_orig - max_selected)));
P2_beta[1, num_features_orig+1] = P2_beta[1, max_selected + 1] ;
P2_beta[1, max_selected + 1] = 0;
}
beta_out = t(P2_beta);
}
} else {
P1 = table (seq (1, no_selected), t(Selected));
P1_beta = P1 * beta;
P2_beta = colSums (P1_beta);
if (max_selected < num_features_orig) {
P2_beta = cbind (P2_beta, matrix (0, rows=1, cols=(num_features_orig - max_selected)));
}
beta_out = t(P2_beta);
}
write ( beta_out, fileB, format=fmt );
}
} else {
stop ("Input matrices X and/or Y are out of range!");
}
} else {
stop ("Response matrix with " + num_response_columns + " columns, distribution family (" + distribution_type + ", " + variance_as_power_of_the_mean
+ ") and link family (" + link_type + ", " + link_as_power_of_the_mean + ") are NOT supported together.");
}
}
glm_initialize = function (Matrix[double] X, Matrix[double] Y, int dist_type, double var_power, int link_type, double link_power, int icept_status, int max_iter_CG)
return (Matrix[double] beta, double saturated_log_l, int isNaN)
{
saturated_log_l = 0.0;
isNaN = 0;
y_corr = Y [, 1];
if (dist_type == 2) {
n_corr = rowSums (Y);
is_n_zero = (n_corr == 0);
y_corr = Y [, 1] / (n_corr + is_n_zero) + (0.5 - Y [, 1]) * is_n_zero;
}
linear_terms = y_corr;
if (dist_type == 1 & link_type == 1) { # POWER DISTRIBUTION
if (link_power == 0) {
if (sum (y_corr < 0) == 0) {
is_zero_y_corr = (y_corr == 0);
linear_terms = log (y_corr + is_zero_y_corr) - is_zero_y_corr / (1.0 - is_zero_y_corr);
} else { isNaN = 1; }
} else { if (link_power == 1.0) {
linear_terms = y_corr;
} else { if (link_power == -1.0) {
linear_terms = 1.0 / y_corr;
} else { if (link_power == 0.5) {
if (sum (y_corr < 0) == 0) {
linear_terms = sqrt (y_corr);
} else { isNaN = 1; }
} else { if (link_power > 0) {
if (sum (y_corr < 0) == 0) {
is_zero_y_corr = (y_corr == 0);
linear_terms = (y_corr + is_zero_y_corr) ^ link_power - is_zero_y_corr;
} else { isNaN = 1; }
} else {
if (sum (y_corr <= 0) == 0) {
linear_terms = y_corr ^ link_power;
} else { isNaN = 1; }
}}}}}
}
if (dist_type == 2 & link_type >= 1 & link_type <= 5)
{ # BINOMIAL/BERNOULLI DISTRIBUTION
if (link_type == 1 & link_power == 0) { # Binomial.log
if (sum (y_corr < 0) == 0) {
is_zero_y_corr = (y_corr == 0);
linear_terms = log (y_corr + is_zero_y_corr) - is_zero_y_corr / (1.0 - is_zero_y_corr);
} else { isNaN = 1; }
} else { if (link_type == 1 & link_power > 0) { # Binomial.power_nonlog pos
if (sum (y_corr < 0) == 0) {
is_zero_y_corr = (y_corr == 0);
linear_terms = (y_corr + is_zero_y_corr) ^ link_power - is_zero_y_corr;
} else { isNaN = 1; }
} else { if (link_type == 1) { # Binomial.power_nonlog neg
if (sum (y_corr <= 0) == 0) {
linear_terms = y_corr ^ link_power;
} else { isNaN = 1; }
} else {
is_zero_y_corr = (y_corr <= 0);
is_one_y_corr = (y_corr >= 1.0);
y_corr = y_corr * (1.0 - is_zero_y_corr) * (1.0 - is_one_y_corr) + 0.5 * (is_zero_y_corr + is_one_y_corr);
if (link_type == 2) { # Binomial.logit
linear_terms = log (y_corr / (1.0 - y_corr))
+ is_one_y_corr / (1.0 - is_one_y_corr) - is_zero_y_corr / (1.0 - is_zero_y_corr);
} else { if (link_type == 3) { # Binomial.probit
y_below_half = y_corr + (1.0 - 2.0 * y_corr) * (y_corr > 0.5);
t = sqrt (- 2.0 * log (y_below_half));
approx_inv_Gauss_CDF = - t + (2.515517 + t * (0.802853 + t * 0.010328)) / (1.0 + t * (1.432788 + t * (0.189269 + t * 0.001308)));
linear_terms = approx_inv_Gauss_CDF * (1.0 - 2.0 * (y_corr > 0.5))
+ is_one_y_corr / (1.0 - is_one_y_corr) - is_zero_y_corr / (1.0 - is_zero_y_corr);
} else { if (link_type == 4) { # Binomial.cloglog
linear_terms = log (- log (1.0 - y_corr))
- log (- log (0.5)) * (is_zero_y_corr + is_one_y_corr)
+ is_one_y_corr / (1.0 - is_one_y_corr) - is_zero_y_corr / (1.0 - is_zero_y_corr);
} else { if (link_type == 5) { # Binomial.cauchit
linear_terms = tan ((y_corr - 0.5) * pi)
+ is_one_y_corr / (1.0 - is_one_y_corr) - is_zero_y_corr / (1.0 - is_zero_y_corr);
}} }}}}}
}
if (isNaN == 0) {
[saturated_log_l, isNaN] =
glm_log_likelihood_part (linear_terms, Y, dist_type, var_power, link_type, link_power);
}
if ((dist_type == 1 & link_type == 1 & link_power == 0) |
(dist_type == 2 & link_type >= 2))
{
desired_eta = 0.0;
} else { if (link_type == 1 & link_power == 0) {
desired_eta = log (0.5);
} else { if (link_type == 1) {
desired_eta = 0.5 ^ link_power;
} else {
desired_eta = 0.5;
}}}
beta = matrix (0.0, rows = ncol(X), cols = 1);
if (desired_eta != 0) {
if (icept_status == 1 | icept_status == 2) {
beta [nrow(beta), 1] = desired_eta;
} else {
# We want: avg (X %*% ssX_transform %*% beta) = desired_eta
# Note that "ssX_transform" is trivial here, hence ignored
beta = straightenX (X, 0.000001, max_iter_CG);
beta = beta * desired_eta;
} } }
glm_dist = function (Matrix[double] linear_terms, Matrix[double] Y,
int dist_type, double var_power, int link_type, double link_power)
return (Matrix[double] g_Y, Matrix[double] w)
# ORIGINALLY we returned more meaningful vectors, namely:
# Matrix[double] y_residual : y - y_mean, i.e. y observed - y predicted
# Matrix[double] link_gradient : derivative of the link function
# Matrix[double] var_function : variance without dispersion, i.e. the V(mu) function
# BUT, this caused roundoff errors, so we had to compute "directly useful" vectors
# and skip over the "meaningful intermediaries". Now we output these two variables:
# g_Y = y_residual / (var_function * link_gradient);
# w = 1.0 / (var_function * link_gradient ^ 2);
{
num_records = nrow (linear_terms);
zeros_r = matrix (0.0, rows = num_records, cols = 1);
ones_r = 1 + zeros_r;
g_Y = zeros_r;
w = zeros_r;
# Some constants
one_over_sqrt_two_pi = 0.39894228040143267793994605993438;
ones_2 = matrix (1.0, rows = 1, cols = 2);
p_one_m_one = ones_2;
p_one_m_one [1, 2] = -1.0;
m_one_p_one = ones_2;
m_one_p_one [1, 1] = -1.0;
zero_one = ones_2;
zero_one [1, 1] = 0.0;
one_zero = ones_2;
one_zero [1, 2] = 0.0;
flip_pos = matrix (0, rows = 2, cols = 2);
flip_neg = flip_pos;
flip_pos [1, 2] = 1;
flip_pos [2, 1] = 1;
flip_neg [1, 2] = -1;
flip_neg [2, 1] = 1;
if (dist_type == 1 & link_type == 1) { # POWER DISTRIBUTION
y_mean = zeros_r;
if (link_power == 0) {
y_mean = exp (linear_terms);
y_mean_pow = y_mean ^ (1 - var_power);
w = y_mean_pow * y_mean;
g_Y = y_mean_pow * (Y - y_mean);
} else { if (link_power == 1.0) {
y_mean = linear_terms;
w = y_mean ^ (- var_power);
g_Y = w * (Y - y_mean);
} else {
y_mean = linear_terms ^ (1.0 / link_power);
c1 = (1 - var_power) / link_power - 1;
c2 = (2 - var_power) / link_power - 2;
g_Y = (linear_terms ^ c1) * (Y - y_mean) / link_power;
w = (linear_terms ^ c2) / (link_power ^ 2);
} }}
if (dist_type == 2 & link_type >= 1 & link_type <= 5)
{ # BINOMIAL/BERNOULLI DISTRIBUTION
if (link_type == 1) { # BINOMIAL.POWER LINKS
if (link_power == 0) { # Binomial.log
vec1 = 1 / (exp (- linear_terms) - 1);
g_Y = Y [, 1] - Y [, 2] * vec1;
w = rowSums (Y) * vec1;
} else { # Binomial.nonlog
vec1 = zeros_r;
if (link_power == 0.5) {
vec1 = 1 / (1 - linear_terms ^ 2);
} else { if (sum (linear_terms < 0) == 0) {
vec1 = linear_terms ^ (- 2 + 1 / link_power) / (1 - linear_terms ^ (1 / link_power));
} else {isNaN = 1;}}
# We want a "zero-protected" version of
# vec2 = Y [, 1] / linear_terms;
is_y_0 = (Y [, 1] == 0);
vec2 = (Y [, 1] + is_y_0) / (linear_terms * (1 - is_y_0) + is_y_0) - is_y_0;
g_Y = (vec2 - Y [, 2] * vec1 * linear_terms) / link_power;
w = rowSums (Y) * vec1 / link_power ^ 2;
}
} else {
is_LT_pos_infinite = (linear_terms == Inf);
is_LT_neg_infinite = (linear_terms == -Inf);
is_LT_infinite = is_LT_pos_infinite %*% one_zero + is_LT_neg_infinite %*% zero_one;
finite_linear_terms = replace (target = linear_terms, pattern = Inf, replacement = 0);
finite_linear_terms = replace (target = finite_linear_terms, pattern = -Inf, replacement = 0);
if (link_type == 2) { # Binomial.logit
Y_prob = exp (finite_linear_terms) %*% one_zero + ones_r %*% zero_one;
Y_prob = Y_prob / (rowSums (Y_prob) %*% ones_2);
Y_prob = Y_prob * ((1.0 - rowSums (is_LT_infinite)) %*% ones_2) + is_LT_infinite;
g_Y = rowSums (Y * (Y_prob %*% flip_neg)); ### = y_residual;
w = rowSums (Y * (Y_prob %*% flip_pos) * Y_prob); ### = y_variance;
} else { if (link_type == 3) { # Binomial.probit
is_lt_pos = (linear_terms >= 0);
t_gp = 1.0 / (1.0 + abs (finite_linear_terms) * 0.231641888); # 0.231641888 = 0.3275911 / sqrt (2.0)
pt_gp = t_gp * ( 0.254829592
+ t_gp * (-0.284496736 # "Handbook of Mathematical Functions", ed. by M. Abramowitz and I.A. Stegun,
+ t_gp * ( 1.421413741 # U.S. Nat-l Bureau of Standards, 10th print (Dec 1972), Sec. 7.1.26, p. 299
+ t_gp * (-1.453152027
+ t_gp * 1.061405429))));
the_gauss_exp = exp (- (linear_terms ^ 2) / 2.0);
vec1 = 0.25 * pt_gp * (2 - the_gauss_exp * pt_gp);
vec2 = Y [, 1] - rowSums (Y) * is_lt_pos + the_gauss_exp * pt_gp * rowSums (Y) * (is_lt_pos - 0.5);
w = the_gauss_exp * (one_over_sqrt_two_pi ^ 2) * rowSums (Y) / vec1;
g_Y = one_over_sqrt_two_pi * vec2 / vec1;
} else { if (link_type == 4) { # Binomial.cloglog
the_exp = exp (linear_terms)
the_exp_exp = exp (- the_exp);
is_too_small = ((10000000 + the_exp) == 10000000);
the_exp_ratio = (1 - is_too_small) * (1 - the_exp_exp) / (the_exp + is_too_small) + is_too_small * (1 - the_exp / 2);
g_Y = (rowSums (Y) * the_exp_exp - Y [, 2]) / the_exp_ratio;
w = the_exp_exp * the_exp * rowSums (Y) / the_exp_ratio;
} else { if (link_type == 5) { # Binomial.cauchit
Y_prob = 0.5 + (atan (finite_linear_terms) %*% p_one_m_one) / pi;
Y_prob = Y_prob * ((1.0 - rowSums (is_LT_infinite)) %*% ones_2) + is_LT_infinite;
y_residual = Y [, 1] * Y_prob [, 2] - Y [, 2] * Y_prob [, 1];
var_function = rowSums (Y) * Y_prob [, 1] * Y_prob [, 2];
link_gradient_normalized = (1 + linear_terms ^ 2) * pi;
g_Y = rowSums (Y) * y_residual / (var_function * link_gradient_normalized);
w = (rowSums (Y) ^ 2) / (var_function * link_gradient_normalized ^ 2);
}}}}
}
}
}
glm_log_likelihood_part = function (Matrix[double] linear_terms, Matrix[double] Y,
int dist_type, double var_power, int link_type, double link_power)
return (double log_l, int isNaN)
{
isNaN = 0;
log_l = 0.0;
num_records = nrow (Y);
zeros_r = matrix (0.0, rows = num_records, cols = 1);
if (dist_type == 1 & link_type == 1)
{ # POWER DISTRIBUTION
b_cumulant = zeros_r;
natural_parameters = zeros_r;
is_natural_parameter_log_zero = zeros_r;
if (var_power == 1.0 & link_power == 0) { # Poisson.log
b_cumulant = exp (linear_terms);
is_natural_parameter_log_zero = (linear_terms == -Inf);
natural_parameters = replace (target = linear_terms, pattern = -Inf, replacement = 0);
} else { if (var_power == 1.0 & link_power == 1.0) { # Poisson.id
if (sum (linear_terms < 0) == 0) {
b_cumulant = linear_terms;
is_natural_parameter_log_zero = (linear_terms == 0);
natural_parameters = log (linear_terms + is_natural_parameter_log_zero);
} else {isNaN = 1;}
} else { if (var_power == 1.0 & link_power == 0.5) { # Poisson.sqrt
if (sum (linear_terms < 0) == 0) {
b_cumulant = linear_terms ^ 2;
is_natural_parameter_log_zero = (linear_terms == 0);
natural_parameters = 2.0 * log (linear_terms + is_natural_parameter_log_zero);
} else {isNaN = 1;}
} else { if (var_power == 1.0 & link_power > 0) { # Poisson.power_nonlog, pos
if (sum (linear_terms < 0) == 0) {
is_natural_parameter_log_zero = (linear_terms == 0);
b_cumulant = (linear_terms + is_natural_parameter_log_zero) ^ (1.0 / link_power) - is_natural_parameter_log_zero;
natural_parameters = log (linear_terms + is_natural_parameter_log_zero) / link_power;
} else {isNaN = 1;}
} else { if (var_power == 1.0) { # Poisson.power_nonlog, neg
if (sum (linear_terms <= 0) == 0) {
b_cumulant = linear_terms ^ (1.0 / link_power);
natural_parameters = log (linear_terms) / link_power;
} else {isNaN = 1;}
} else { if (var_power == 2.0 & link_power == -1.0) { # Gamma.inverse
if (sum (linear_terms <= 0) == 0) {
b_cumulant = - log (linear_terms);
natural_parameters = - linear_terms;
} else {isNaN = 1;}
} else { if (var_power == 2.0 & link_power == 1.0) { # Gamma.id
if (sum (linear_terms <= 0) == 0) {
b_cumulant = log (linear_terms);
natural_parameters = - 1.0 / linear_terms;
} else {isNaN = 1;}
} else { if (var_power == 2.0 & link_power == 0) { # Gamma.log
b_cumulant = linear_terms;
natural_parameters = - exp (- linear_terms);
} else { if (var_power == 2.0) { # Gamma.power_nonlog
if (sum (linear_terms <= 0) == 0) {
b_cumulant = log (linear_terms) / link_power;
natural_parameters = - linear_terms ^ (- 1.0 / link_power);
} else {isNaN = 1;}
} else { if (link_power == 0) { # PowerDist.log
natural_parameters = exp (linear_terms * (1.0 - var_power)) / (1.0 - var_power);
b_cumulant = exp (linear_terms * (2.0 - var_power)) / (2.0 - var_power);
} else { # PowerDist.power_nonlog
if (-2 * link_power == 1.0 - var_power) {
natural_parameters = 1.0 / (linear_terms ^ 2) / (1.0 - var_power);
} else { if (-1 * link_power == 1.0 - var_power) {
natural_parameters = 1.0 / linear_terms / (1.0 - var_power);
} else { if ( link_power == 1.0 - var_power) {
natural_parameters = linear_terms / (1.0 - var_power);
} else { if ( 2 * link_power == 1.0 - var_power) {
natural_parameters = linear_terms ^ 2 / (1.0 - var_power);
} else {
if (sum (linear_terms <= 0) == 0) {
power = (1.0 - var_power) / link_power;
natural_parameters = (linear_terms ^ power) / (1.0 - var_power);
} else {isNaN = 1;}
}}}}
if (-2 * link_power == 2.0 - var_power) {
b_cumulant = 1.0 / (linear_terms ^ 2) / (2.0 - var_power);
} else { if (-1 * link_power == 2.0 - var_power) {
b_cumulant = 1.0 / linear_terms / (2.0 - var_power);
} else { if ( link_power == 2.0 - var_power) {
b_cumulant = linear_terms / (2.0 - var_power);
} else { if ( 2 * link_power == 2.0 - var_power) {
b_cumulant = linear_terms ^ 2 / (2.0 - var_power);
} else {
if (sum (linear_terms <= 0) == 0) {
power = (2.0 - var_power) / link_power;
b_cumulant = (linear_terms ^ power) / (2.0 - var_power);
} else {isNaN = 1;}
}}}}
}}}}} }}}}}
if (sum (is_natural_parameter_log_zero * abs (Y)) > 0) {
log_l = -Inf;
isNaN = 1;
}
if (isNaN == 0)
{
log_l = sum (Y * natural_parameters - b_cumulant);
if (log_l != log_l | (log_l == log_l + 1.0 & log_l == log_l * 2.0)) {
log_l = -Inf;
isNaN = 1;
} } }
if (dist_type == 2 & link_type >= 1 & link_type <= 5)
{ # BINOMIAL/BERNOULLI DISTRIBUTION
[Y_prob, isNaN] = binomial_probability_two_column (linear_terms, link_type, link_power);
if (isNaN == 0) {
does_prob_contradict = (Y_prob <= 0);
if (sum (does_prob_contradict * abs (Y)) == 0) {
log_l = sum (Y * log (Y_prob * (1 - does_prob_contradict) + does_prob_contradict));
if (log_l != log_l | (log_l == log_l + 1.0 & log_l == log_l * 2.0)) {
isNaN = 1;
}
} else {
log_l = -Inf;
isNaN = 1;
} } }
if (isNaN == 1) {
log_l = - Inf;
}
}
binomial_probability_two_column =
function (Matrix[double] linear_terms, int link_type, double link_power)
return (Matrix[double] Y_prob, int isNaN)
{
isNaN = 0;
num_records = nrow (linear_terms);
# Define some auxiliary matrices
ones_2 = matrix (1.0, rows = 1, cols = 2);
p_one_m_one = ones_2;
p_one_m_one [1, 2] = -1.0;
m_one_p_one = ones_2;
m_one_p_one [1, 1] = -1.0;
zero_one = ones_2;
zero_one [1, 1] = 0.0;
one_zero = ones_2;
one_zero [1, 2] = 0.0;
zeros_r = matrix (0.0, rows = num_records, cols = 1);
ones_r = 1.0 + zeros_r;
# Begin the function body
Y_prob = zeros_r %*% ones_2;
if (link_type == 1) { # Binomial.power
if (link_power == 0) { # Binomial.log
Y_prob = exp (linear_terms) %*% p_one_m_one + ones_r %*% zero_one;
} else { if (link_power == 0.5) { # Binomial.sqrt
Y_prob = (linear_terms ^ 2) %*% p_one_m_one + ones_r %*% zero_one;
} else { # Binomial.power_nonlog
if (sum (linear_terms < 0) == 0) {
Y_prob = (linear_terms ^ (1.0 / link_power)) %*% p_one_m_one + ones_r %*% zero_one;
} else {isNaN = 1;}
}}
} else { # Binomial.non_power
is_LT_pos_infinite = (linear_terms == Inf);
is_LT_neg_infinite = (linear_terms == -Inf);
is_LT_infinite = is_LT_pos_infinite %*% one_zero + is_LT_neg_infinite %*% zero_one;
finite_linear_terms = replace (target = linear_terms, pattern = Inf, replacement = 0);
finite_linear_terms = replace (target = finite_linear_terms, pattern = -Inf, replacement = 0);
if (link_type == 2) { # Binomial.logit
Y_prob = exp (finite_linear_terms) %*% one_zero + ones_r %*% zero_one;
Y_prob = Y_prob / (rowSums (Y_prob) %*% ones_2);
} else { if (link_type == 3) { # Binomial.probit
lt_pos_neg = (finite_linear_terms >= 0) %*% p_one_m_one + ones_r %*% zero_one;
t_gp = 1.0 / (1.0 + abs (finite_linear_terms) * 0.231641888); # 0.231641888 = 0.3275911 / sqrt (2.0)
pt_gp = t_gp * ( 0.254829592
+ t_gp * (-0.284496736 # "Handbook of Mathematical Functions", ed. by M. Abramowitz and I.A. Stegun,
+ t_gp * ( 1.421413741 # U.S. Nat-l Bureau of Standards, 10th print (Dec 1972), Sec. 7.1.26, p. 299
+ t_gp * (-1.453152027
+ t_gp * 1.061405429))));
the_gauss_exp = exp (- (finite_linear_terms ^ 2) / 2.0);
Y_prob = lt_pos_neg + ((the_gauss_exp * pt_gp) %*% ones_2) * (0.5 - lt_pos_neg);
} else { if (link_type == 4) { # Binomial.cloglog
the_exp = exp (finite_linear_terms);
the_exp_exp = exp (- the_exp);
is_too_small = ((10000000 + the_exp) == 10000000);
Y_prob [, 1] = (1 - is_too_small) * (1 - the_exp_exp) + is_too_small * the_exp * (1 - the_exp / 2);
Y_prob [, 2] = the_exp_exp;
} else { if (link_type == 5) { # Binomial.cauchit
Y_prob = 0.5 + (atan (finite_linear_terms) %*% p_one_m_one) / pi;
} else {
isNaN = 1;
}}}}
Y_prob = Y_prob * ((1.0 - rowSums (is_LT_infinite)) %*% ones_2) + is_LT_infinite;
} }
# THE CG-STEIHAUG PROCEDURE SCRIPT
# Apply Conjugate Gradient - Steihaug algorithm in order to approximately minimize
# 0.5 z^T (X^T diag(w) X + diag (lambda)) z + (g + lambda * beta)^T z
# under constraint: ||z|| <= trust_delta.
# See Alg. 7.2 on p. 171 of "Numerical Optimization" 2nd ed. by Nocedal and Wright
# IN THE ABOVE, "X" IS UNDERSTOOD TO BE "X %*% (SHIFT/SCALE TRANSFORM)"; this transform
# is given separately because sparse "X" may become dense after applying the transform.
#
get_CG_Steihaug_point =
function (Matrix[double] X, Matrix[double] scale_X, Matrix[double] shift_X, Matrix[double] w,
Matrix[double] g, Matrix[double] beta, Matrix[double] lambda, double trust_delta, int max_iter_CG)
return (Matrix[double] z, double neg_log_l_change, int i_CG, int reached_trust_boundary)
{
trust_delta_sq = trust_delta ^ 2;
size_CG = nrow (g);
z = matrix (0.0, rows = size_CG, cols = 1);
neg_log_l_change = 0.0;
reached_trust_boundary = 0;
g_reg = g + lambda * beta;
r_CG = g_reg;
p_CG = -r_CG;
rr_CG = sum(r_CG * r_CG);
eps_CG = rr_CG * min (0.25, sqrt (rr_CG));
converged_CG = 0;
if (rr_CG < eps_CG) {
converged_CG = 1;
}
max_iteration_CG = max_iter_CG;
if (max_iteration_CG <= 0) {
max_iteration_CG = size_CG;
}
i_CG = 0;
while (converged_CG == 0)
{
i_CG = i_CG + 1;
ssX_p_CG = diag (scale_X) %*% p_CG;
ssX_p_CG [size_CG, ] = ssX_p_CG [size_CG, ] + t(shift_X) %*% p_CG;
temp_CG = t(X) %*% (w * (X %*% ssX_p_CG));
q_CG = (lambda * p_CG) + diag (scale_X) %*% temp_CG + shift_X %*% temp_CG [size_CG, ];
pq_CG = sum (p_CG * q_CG);
if (pq_CG <= 0) {
pp_CG = sum (p_CG * p_CG);
if (pp_CG > 0) {
[z, neg_log_l_change] =
get_trust_boundary_point (g_reg, z, p_CG, q_CG, r_CG, pp_CG, pq_CG, trust_delta_sq);
reached_trust_boundary = 1;
} else {
neg_log_l_change = 0.5 * sum (z * (r_CG + g_reg));
}
converged_CG = 1;
}
if (converged_CG == 0) {
alpha_CG = rr_CG / pq_CG;
new_z = z + alpha_CG * p_CG;
if (sum(new_z * new_z) >= trust_delta_sq) {
pp_CG = sum (p_CG * p_CG);
[z, neg_log_l_change] =
get_trust_boundary_point (g_reg, z, p_CG, q_CG, r_CG, pp_CG, pq_CG, trust_delta_sq);
reached_trust_boundary = 1;
converged_CG = 1;
}
if (converged_CG == 0) {
z = new_z;
old_rr_CG = rr_CG;
r_CG = r_CG + alpha_CG * q_CG;
rr_CG = sum(r_CG * r_CG);
if (i_CG == max_iteration_CG | rr_CG < eps_CG) {
neg_log_l_change = 0.5 * sum (z * (r_CG + g_reg));
reached_trust_boundary = 0;
converged_CG = 1;
}
if (converged_CG == 0) {
p_CG = -r_CG + (rr_CG / old_rr_CG) * p_CG;
} } } } }
# An auxiliary function used twice inside the CG-STEIHAUG loop:
get_trust_boundary_point =
function (Matrix[double] g, Matrix[double] z, Matrix[double] p,
Matrix[double] q, Matrix[double] r, double pp, double pq,
double trust_delta_sq)
return (Matrix[double] new_z, double f_change)
{
zz = sum (z * z); pz = sum (p * z);
sq_root_d = sqrt (pz * pz - pp * (zz - trust_delta_sq));
tau_1 = (- pz + sq_root_d) / pp;
tau_2 = (- pz - sq_root_d) / pp;
zq = sum (z * q); gp = sum (g * p);
f_extra = 0.5 * sum (z * (r + g));
f_change_1 = f_extra + (0.5 * tau_1 * pq + zq + gp) * tau_1;
f_change_2 = f_extra + (0.5 * tau_2 * pq + zq + gp) * tau_2;
ind1 = as.integer(f_change_1 < f_change_2);
ind2 = as.integer(f_change_1 >= f_change_2);
new_z = z + ((ind1 * tau_1 + ind2 * tau_2) * p);
f_change = ind1 * f_change_1 + ind2 * f_change_2;
}
# Computes vector w such that ||X %*% w - 1|| -> MIN given avg(X %*% w) = 1
# We find z_LS such that ||X %*% z_LS - 1|| -> MIN unconditionally, then scale
# it to compute w = c * z_LS such that sum(X %*% w) = nrow(X).
straightenX =
function (Matrix[double] X, double eps, int max_iter_CG)
return (Matrix[double] w)
{
w_X = t(colSums(X));
lambda_LS = 0.000001 * sum(X ^ 2) / ncol(X);
eps_LS = eps * nrow(X);
# BEGIN LEAST SQUARES
r_LS = - w_X;
z_LS = matrix (0.0, rows = ncol(X), cols = 1);
p_LS = - r_LS;
norm_r2_LS = sum (r_LS ^ 2);
i_LS = 0;
while (i_LS < max_iter_CG & i_LS < ncol(X) & norm_r2_LS >= eps_LS)
{
q_LS = t(X) %*% X %*% p_LS;
q_LS = q_LS + lambda_LS * p_LS;
alpha_LS = norm_r2_LS / sum (p_LS * q_LS);
z_LS = z_LS + alpha_LS * p_LS;
old_norm_r2_LS = norm_r2_LS;
r_LS = r_LS + alpha_LS * q_LS;
norm_r2_LS = sum (r_LS ^ 2);
p_LS = -r_LS + (norm_r2_LS / old_norm_r2_LS) * p_LS;
i_LS = i_LS + 1;
}
# END LEAST SQUARES
w = (nrow(X) / sum (w_X * z_LS)) * z_LS;
}