blob: b78a5dbcefb5420b6561ca164d8b8b42505424de [file] [log] [blame]
#-------------------------------------------------------------
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
#-------------------------------------------------------------
# Computes shapley values for multiple instances in parallel using antithetic permutation sampling.
# The resulting matrix phis holds the shapley values for each feature in the column given by the index of the feature in the sample.
#
# This method first creates two large matrices for masks and masked background data for all permutations and
# then runs in paralell on all instances in x.
# While the prepared matrices can become very large (2 * #features * #permuations * #n_samples * #features),
# the preparation of a row for the model call breaks down to a single element-wise multiplication of this mask with the row and
# an addition to the masked background data, since masks can be reused for each instance.
#
# INPUT:
# ---------------------------------------------------------------------------------------
# model_function The function of the model to be evaluated as a String. This function has to take a matrix of samples
# and return a vector of predictions.
# It might be usefull to wrap the model into a function the takes and returns the desired shapes and
# use this wrapper here.
# model_args Arguments in order for the model, if desired. This will be prepended by the created instances-matrix.
# x_instances Multiple instances as rows for which to compute the shapley values.
# X_bg The background dataset from which to pull the random samples to perform Monte Carlo integration.
# n_permutations The number of permutaions. Defaults to 10. Theoretical 1 should already be enough for models with up
# to second order interaction effects.
# n_samples Number of samples from X_bg used for marginalization.
# remove_non_var EXPERIMENTAL: If set, for every instance the varaince of each feature is checked against this feature in the
# background data. If it does not change, we do not run any model cals for it.
# seed A seed, in case the sampling has to be deterministic.
# verbose A boolean to enable logging of each step of the function.
# ---------------------------------------------------------------------------------------
#
# OUTPUT:
# -----------------------------------------------------------------------------
# S Matrix holding the shapley values along the cols, one row per instance.
# expected Double holding the average prediction of all instances.
# -----------------------------------------------------------------------------
s_shapExplainer = function(String model_function, list[unknown] model_args, Matrix[Double] x_instances,
Matrix[Double] X_bg, Integer n_permutations = 10, Integer n_samples = 100, Integer remove_non_var=0,
Matrix[Double] partitions=as.matrix(-1), Integer seed = -1, Integer verbose = 0)
return (Matrix[Double] row_phis, Double expected)
{
u_printShapMessage("Parallel Permutation Explainer for "+nrow(x_instances)+" rows.", verbose)
u_printShapMessage("Number of Features: "+ncol(x_instances), verbose )
total_preds=ncol(x_instances)*2*n_permutations*n_samples*nrow(x_instances)
u_printShapMessage("Number of predictions: "+toString(total_preds)+" in "+nrow(x_instances)+
" parallel cals.", verbose )
#start with all features
features=u_range(1, ncol(x_instances))
#handle partitions
if(sum(partitions) != -1){
if(remove_non_var != 0){
stop("shapley_permutations_by_row:ERROR: Can't use n_non_varying_inds and partitions at the same time.")
}
features=removePartitionsFromFeatures(features, partitions)
reduced_total_preds=ncol(features)*2*n_permutations*n_samples*nrow(x_instances)
u_printShapMessage("Using Partitions reduces number of features to "+ncol(features)+".", verbose )
u_printShapMessage("Total number of predictions reduced by "+(total_preds-reduced_total_preds)/total_preds+" to "+reduced_total_preds+".", verbose )
}
#lengths and offsets
total_features = ncol(x_instances)
perm_length = ncol(features)
full_mask_offset = perm_length * 2 * n_samples
n_partition_features = total_features - perm_length
#sample from X_bg
u_printShapMessage("Sampling from X_bg", verbose )
# could use new samples for each permutation by sampling n_samples*n_permutations
X_bg_samples = u_sample_with_potential_replace(X_bg=X_bg, samples=n_samples, seed=seed )
row_phis = matrix(0, rows=nrow(x_instances), cols=total_features)
expected_m = matrix(0, rows=nrow(x_instances), cols=1)
#prepare masks for all permutations, since it stays the same for every row
u_printShapMessage("Preparing reusable intermediate masks.", verbose )
permutations = matrix(0, rows=n_permutations, cols=perm_length)
masks_for_permutations = matrix(0, rows=perm_length*2*n_permutations*n_samples, cols=total_features)
parfor (i in 1:n_permutations, check=0){
#shuffle features to get permutation
permutations[i] = t(u_shuffle(t(features)))
perm_mask = prepare_mask_for_permutation(permutation=permutations[i], partitions=partitions)
offset_masks = (i-1) * full_mask_offset + 1
masks_for_permutations[offset_masks:offset_masks+full_mask_offset-1]=prepare_full_mask(perm_mask, n_samples)
}
#replicate background and mask it, since it also can stay the same for every row
# could use new samples for each permutation by sampling n_samples*n_permutations and telling this function about it
masked_bg_for_permutations = prepare_masked_X_bg(masks_for_permutations, X_bg_samples, 0)
u_printShapMessage("Computing phis in parallel.", verbose )
#enable spark execution for parfor if desired
#TODO allow spark mode via parameter?
#parfor (i in 1:nrow(x_instances), opt=CONSTRAINED, mode=REMOTE_SPARK){
parfor (i in 1:nrow(x_instances)){
if(remove_non_var == 1){
# try to remove inds that do not vary from the background
non_var_inds = get_non_varying_inds(x_instances[i], X_bg_samples)
# only remove if more than 2 features remain, less then two breaks removal procedure
if (ncol(x_instances) > length(non_var_inds)+2){
#remove samples and masks for non varying features
[i_masks_for_permutations, i_masked_bg_for_permutations] = remove_inds(masks_for_permutations, masked_bg_for_permutations, permutations, non_var_inds, n_samples)
}else{
# we would remove all but two features, whichs breaks the removal algorithm
non_var_inds = as.matrix(-1)
i_masks_for_permutations = masks_for_permutations
i_masked_bg_for_permutations = masked_bg_for_permutations
}
} else {
non_var_inds = as.matrix(-1)
i_masks_for_permutations = masks_for_permutations
i_masked_bg_for_permutations = masked_bg_for_permutations
}
#apply masks and bg data for all permutations at once
X_test = apply_full_mask(x_instances[i], i_masks_for_permutations, i_masked_bg_for_permutations)
#generate args for call to model
X_arg = append(list(X=X_test), model_args)
#call model
P = eval(model_function, X_arg)
#compute means, deviding n_rows by n_samples
P = compute_means_from_predictions(P=P, n_samples=n_samples)
#compute phis
[phis, e] = compute_phis_from_prediction_means(P=P, permutations=permutations, non_var_inds=non_var_inds, n_partition_features=n_partition_features)
expected_m[i] = e
#compute phis for this row from all permutations
row_phis[i] = t(phis)
}
#compute expected of model from all rows
expected = mean(expected_m)
}
# Computes which indices do not vary from the background.
# Uses the appraoch from numpy.isclose() and compares to the largest diff of each feature in the bg data.
# In the futere, more advanced techniques like using std-dev of bg data as a tollerance could be used.
#
# INPUT:
# -----------------------------------------------------------------------------
# x One single instance.
# X_bg Background dataset.
# -----------------------------------------------------------------------------
# OUTPUT:
# -----------------------------------------------------------------------------
# non_varying_inds A row-vector with all the indices that do not vary from the background dataset.
# -----------------------------------------------------------------------------
get_non_varying_inds = function(Matrix[Double] x, Matrix[Double] X_bg)
return (Matrix[Double] non_varying_inds){
#from numpy.isclose but adapted to fit MSE of shap, which is within the same scale
rtol = 1e-04
atol = 1e-05
# compute distance metrics
diff = colMaxs(abs(X_bg -x))
rdist = atol + rtol * colMaxs(abs(X_bg))
non_varying_inds = (diff <= rdist)
# translate to indices
non_varying_inds = t(seq(1,ncol(x))) * non_varying_inds
# remove the ones that do vary
non_varying_inds = removeEmpty(target=non_varying_inds, margin="cols")
}
# Prepares a boolean mask for removing features according to permutaion.
# The resulting matrix needs to be inflated to a sample set by using prepare_samples_from_mask() before calling the model.
#
# INPUT:
# ---------------------------------------------------------------------------------------
# permutation A single permutation of varying features.
# If using partitions, remove them beforhand by using removePartitionsFromFeatures() from the utils.
# n_non_varying_inds The number of feature that do not vary in the background data.
# Can be retrieved e.g. by looking at std.dev
# partitions Matrix with first elemnt of partition in first row and last element of partition in second row.
# Used to treat partitions as one feature when creating masks. Useful for one-hot-encoded features.
# ---------------------------------------------------------------------------------------
#
# OUTPUT:
# -----------------------------------------------------------------------------
# mask Boolean mask.
# -----------------------------------------------------------------------------
prepare_mask_for_permutation = function(Matrix[Double] permutation, Integer n_non_varying_inds=0,
Matrix[Double] partitions=as.matrix(-1))
return (Matrix[Double] masks){
if(sum(partitions)!=-1){
#can't use n_non_varying_inds and partitions at the same time
if(n_non_varying_inds > 0){
stop("shap-explainer::prepare_mask_for_permutation:ERROR: Can't use n_non_varying_inds and partitions at the same time.")
}
#number of features not in permutation is diff between start and end of partitions, since first feature remains in permutation
skip_inds = partitions[2,] - partitions[1,]
#skip these inds by treating them as non varying
n_non_varying_inds = sum(skip_inds)
}
#total number of features
perm_len = ncol(permutation)+n_non_varying_inds
if(n_non_varying_inds > 0){
#prep full constructor with placeholders
mask_constructor = matrix(perm_len+1, rows=1, cols = perm_len)
mask_constructor[1,1:ncol(permutation)] = permutation
}else{
mask_constructor=permutation
}
perm_cols = ncol(mask_constructor)
# we compute mask on reverse permutation wnd reverse it later to get desired shape
# create row indicator vector ctable
perm_mask_rows = seq(1,perm_cols)
#TODO: col-vector and matrix mult?
perm_mask_rows = matrix(1, rows=perm_cols, cols=perm_cols) * perm_mask_rows
perm_mask_rows = lower.tri(target=perm_mask_rows, diag=TRUE, values=TRUE)
perm_mask_rows = removeEmpty(target=matrix(perm_mask_rows, rows=1, cols=length(perm_mask_rows)), margin="cols")
# create column indicator for ctable
rev_permutation = t(rev(t(mask_constructor)))
#TODO: col-vector and matrix mult?
perm_mask_cols = matrix(1, rows=perm_cols, cols=perm_cols) * mask_constructor
perm_mask_cols = lower.tri(target=perm_mask_cols, diag=TRUE, values=TRUE)
perm_mask_cols = removeEmpty(target = matrix(perm_mask_cols, cols=length(perm_mask_cols), rows=1), margin="cols")
#ctable
masks = table(perm_mask_rows, perm_mask_cols, perm_len, perm_len)
if(n_non_varying_inds > 0){
#truncate non varying rows
masks = masks[1:ncol(permutation)]
#replicate mask from first feature of each partionton to entire partitions
if(sum(partitions)!=-1){
for ( i in 1:ncol(partitions) ){
p_start = as.scalar(partitions[1,i])
p_end = as.scalar(partitions[2,i])
proxy = masks[,p_start] %*% matrix(1, rows=1, cols=p_end-p_start)
masks[,p_start+1:p_end] = proxy
}
}
}
# add inverted mask and revert order for desired shape for forward and backward pass
masks = rbind(!masks[nrow(masks)],masks, rev(!masks[1:nrow(masks)-1]))
}
# Prepares the full mask for marginalization by repeating the rows
#
# INPUT:
# ---------------------------------------------------------------------------------------
# mask Boolean mask with 1, where from x, and 0, where integrated over background data.
# n_samples Number samples for which to replicate.
# ---------------------------------------------------------------------------------------
#
# OUTPUT:
# -----------------------------------------------------------------------------
# x_mask_full A replicated mask.
# -----------------------------------------------------------------------------
prepare_full_mask = function(Matrix[Double] mask, Integer n_samples)
return (Matrix[Double] x_mask_full){
x_mask_full = u_repeatRows(mask,n_samples)
}
# Prepares the masked background by replicating the samples and masking them using the full mask.
#
# INPUT:
# ---------------------------------------------------------------------------------------
# x_mask_full Boolean mask replicated orw-wise.
# X_bg_samples Samples from background. Either the same n samples for all permutaions or
# n*p samples, so each permutation has its own samples.
# n_perms_in_samples Number of sample sets to identify block which need to be replicated in X_bg_samples.
# ---------------------------------------------------------------------------------------
#
# OUTPUT:
# -----------------------------------------------------------------------------
# x_mask_full A replicated mask.
# -----------------------------------------------------------------------------
prepare_masked_X_bg = function(Matrix[Double] x_mask_full, Matrix[Double] X_bg_samples, Integer n_perms_in_samples)
return (Matrix[Double] masked_X_bg){
#Repeat background once for every row in original mask.
#If the same samples are used for each permutation, simply repeat the entire samples accordingly
if (n_perms_in_samples <= 1){
#Since x_mask_full was already replicated row-wise by the number of rows in X_bg_samples, we devide by it.
masked_X_bg = u_repeatMatrix(X_bg_samples, nrow(x_mask_full)/nrow(X_bg_samples))
}else{
# if X_bg_samples has independent samples for each perm, it holds n_samples*n_perms rows.
block_size = nrow(X_bg_samples)/n_perms_in_samples
masked_X_bg = u_repeatMatrixBlocks(X_bg_samples, block_size, nrow(x_mask_full)/block_size/n_perms_in_samples)
}
masked_X_bg = masked_X_bg * !x_mask_full
}
# Applies the masked background and boolen mask to individual instance of interest.
#
# INPUT:
# ---------------------------------------------------------------------------------------
# x_row Instance of interest as row-vector.
# x_mask_full Boolean mask replicated orw-wise.
# masked_X_bg Prepared background samples.
# ---------------------------------------------------------------------------------------
#
# OUTPUT:
# -----------------------------------------------------------------------------
# X_masked Set of synthesized instances for x_row.
# -----------------------------------------------------------------------------
apply_full_mask = function(Matrix[Double] x_row, Matrix[Double] x_mask_full, Matrix[Double] masked_X_bg)
return (Matrix[Double] X_masked){
#add the masked data from this row
X_masked = masked_X_bg + (x_mask_full * x_row)
}
# Removes all rows from the prepared masks and background data whenever their feature is marked as non-varying.
#
# INPUT:
# ---------------------------------------------------------------------------------------
# masks Prepared and replicated mask for a singel instance.
# masked_X_bg Prepared and replicated background data.
# full_permutations The permutations from which the masks and bd data were created.
# non_var_inds A row-vector containiing the indices that were found to be not varying for this instance.
# n_samples The number samples over which each row is integarted.
# ---------------------------------------------------------------------------------------
#
# OUTPUT:
# -----------------------------------------------------------------------------
# sub_mask A subset of masks where for each permutation the rows that correspond to
# non-varying features are removed.
# sub_masked_X_bg A subset of the background data where for each permutation the rows that correspond to
# non-varying features are removed.
# -----------------------------------------------------------------------------
remove_inds = function(Matrix[Double] masks, Matrix[Double] masked_X_bg, Matrix[Double] full_permutations,
Matrix[Double] non_var_inds, Integer n_samples)
return(Matrix[Double] sub_mask, Matrix[Double] sub_masked_X_bg){
offsets = seq(0,length(full_permutations)-ncol(full_permutations), ncol(full_permutations))
###
# get row indices from permutations
total_row_index = full_permutations + offsets
total_row_index = matrix(total_row_index, rows=length(total_row_index), cols=1)
row_index = toOneHot(total_row_index, nrow(total_row_index))
####
# get indices for all permutations as boolean mask
# repeat inds for every permutation
non_var_inds = matrix(1, rows=nrow(full_permutations), cols=ncol(non_var_inds)) * non_var_inds
#add offset
non_var_total = non_var_inds + offsets
#reshape into col-vec
non_var_total = matrix(non_var_total,rows=length(non_var_total), cols=1, byrow=FALSE)
non_var_mask = toOneHot(non_var_total, nrow(total_row_index))
non_var_mask = colSums(non_var_mask)
###
# multiply to get mask
non_var_rows = row_index %*% t(non_var_mask)
####
# unfold to full mask length
# reshape to add for each permutations
reshaped_rows = matrix(non_var_rows, rows=ncol(full_permutations), cols=nrow(full_permutations), byrow=FALSE)
reshaped_rows_full = matrix(0,rows=1,cols=ncol(reshaped_rows))
#rbind to manipulate all perms at once
if( sum(reshaped_rows[nrow(reshaped_rows)]) > 0 ){
#fix last row issue by setting last zero to one, if 1 in last row
row_indicator = (!reshaped_rows) * seq(1, nrow(reshaped_rows), 1)
row_indicator = colMaxs(row_indicator)
row_indicator = t(toOneHot(t(row_indicator), nrow(reshaped_rows)))
reshaped_rows_2 = reshaped_rows[1:nrow(reshaped_rows)-1] + row_indicator[1:nrow(reshaped_rows)-1]
reshaped_rows_full = rbind(reshaped_rows_full,reshaped_rows,reshaped_rows_2)
}else{
reshaped_rows_full = rbind(reshaped_rows_full,reshaped_rows,reshaped_rows[1:nrow(reshaped_rows)-1])
}
#reshape into col-vec
non_var_total = matrix(reshaped_rows_full, rows=length(reshaped_rows_full), cols=1, byrow=FALSE)
#replicate, if masks already replicated
if (n_samples > 1){
non_var_total = matrix(1, rows=nrow(non_var_total), cols=n_samples) * non_var_total
non_var_total = matrix(non_var_total, rows=length(non_var_total), cols=1)
}
#remove from mask according to this vector
sub_mask = removeEmpty(target=masks, select=!non_var_total, margin="rows")
#set to 1 where non varying
#sub_mask = removed_short_mask | non_var_mask[1, 1:ncol(removed_short_mask)]
sub_masked_X_bg = removeEmpty(target=masked_X_bg, select=!non_var_total, margin="rows")
}
# Performs the integration/marginalization by computing means.
#
# INPUT:
# ---------------------------------------------------------------------------------------
# P Predictions from model.
# n_samples Number of samples over which to take the mean.
# ---------------------------------------------------------------------------------------
#
# OUTPUT:
# -----------------------------------------------------------------------------
# P_means The means of the sample groups. Each row is one group with means in cols.
# -----------------------------------------------------------------------------
compute_means_from_predictions = function(Matrix[Double] P, Integer n_samples)
return (Matrix[Double] P_means){
n_features = nrow(P)/n_samples
#transpose and reshape to concat all values of same type
# TODO: unneccessary for vectors, only t() would be needed
P = matrix(t(P), cols=1, rows=length(P))
#reshape, so all predictions from one batch are in one row
P = matrix(P, cols=n_samples, rows=length(P)/n_samples)
#compute row means
P_means = rowMeans(P)
# reshape and transpose to get back to input dimensions
P_means = matrix(P_means, rows=n_features, cols=length(P_means)/n_features)
}
# Computes phis from predictions for a permutation.
#
# INPUT:
# ---------------------------------------------------------------------------------------
# P Predictions for multiple permutations.
# permutations Permutations to get the feature indices from.
# non_var_inds Matrix holding the indices of non-varying features in the permutation that were ignored
# during prediction. These will be remove from the <permutations> during computation of the phis.
# n_partition_features Number of features that are in partitions - number of partitions:
# There is still one feature per partition kept in the perms!
# ---------------------------------------------------------------------------------------
#
# OUTPUT:
# -----------------------------------------------------------------------------
# phis Phis or shapley values computed from this permutation.
# Every row holds the phis for the corresponding feature.
# -----------------------------------------------------------------------------
compute_phis_from_prediction_means = function(Matrix[Double] P, Matrix[Double] permutations,
Matrix[Double] non_var_inds=as.matrix(-1), Integer n_partition_features = 0)
return(Matrix[Double] phis, Double expected){
perm_len=ncol(permutations)
n_non_var_inds = 0
partial_permutations = permutations
if(sum(non_var_inds)>0){
n_non_var_inds = ncol(non_var_inds)
#flatten perms to remove from all perms at once
perms_flattened = matrix(permutations, rows=length(permutations), cols=1)
rem_selector = outer(perms_flattened, non_var_inds, "==")
rem_selector = rowSums(rem_selector)
partial_permutations = removeEmpty(target=perms_flattened, select=!rem_selector, margin="rows")
#reshape
partial_permutations = matrix(partial_permutations, rows=perm_len-n_non_var_inds, cols=nrow(permutations))
perm_len = perm_len-n_non_var_inds
}
#reshape P to get one col per permutation
P_perm = matrix(P, rows=2*perm_len, cols=nrow(permutations), byrow=FALSE)
#forwards phis
forward_phis = P_perm[2:perm_len+1] - P_perm[1:perm_len]
#backward phis and fix first and last
backward_phis = rbind(P_perm[perm_len+2] - P_perm[1], P_perm[perm_len+3:2*perm_len] - P_perm[perm_len+2:2*perm_len-1], P_perm[perm_len+1] - P_perm[2*perm_len])
#reverse to match order of features in permutation
backward_phis = rev(backward_phis)
#avg forward and backward
forward_phis = matrix(forward_phis, rows=length(forward_phis), cols=1, byrow=FALSE)
backward_phis = matrix(backward_phis, rows=length(backward_phis), cols=1, byrow=FALSE)
avg_phis = (forward_phis + backward_phis) / 2
#aggregate to get only one phi per feature (and implicitly add zeros for non var inds)
perms_flattened = matrix(partial_permutations, rows=length(partial_permutations), cols=1)
phis = aggregate(target=avg_phis, groups=perms_flattened, fn="mean", ngroups=ncol(permutations)+n_partition_features)
#get expected from first row
expected=mean(P_perm[1])
}
# Removes features that are part of a partition.
# Keeps first feature of partition as proxy for partition.
#
# INPUT:
# ---------------------------------------------------------------------------------------
# features Matrix holding features in its cols.
# partitions Matirx holding start and end of partitions in the cols of the first and second row respectively.
# ---------------------------------------------------------------------------------------
#
# OUTPUT:
# -----------------------------------------------------------------------------
# short_features Matrix like fatures, but with the ones from partitiones removed.
# -----------------------------------------------------------------------------
removePartitionsFromFeatures = function(Matrix[Double] features, Matrix[Double] partitions)
return (Matrix[Double] short_features){
#remove from features
rm_mask = matrix(0, rows=1, cols=ncol(features))
for (i in 1:ncol(partitions)){
part_start = as.scalar(partitions[1,i])
part_end = as.scalar(partitions[2,i])
#include part_start as proxy of partition
rm_mask = rm_mask + (features > part_start) * (features <= part_end)
}
short_features = removeEmpty(target=features, margin="cols", select=!rm_mask)
}
########################
# Utility Functions that might be worth refactoring into its own file
# They could be used in other scenarios as well
########################
# Samples from the background data X_bg.
# The function first uses all background samples without replacement, but if more samples are requested than
# available in X_bg, it shuffles X_bg and pulls more samples from it, making it sampling with replacement.
# TODO: Might be replacable by other builtin for sampling in the future
#
# INPUT:
# ---------------------------------------------------------------------------------------
# X_bg Matrix of background data
# samples Number of total samples
# always_shuffle Boolean to enable reshuffleing of X_bg, defaults to false.
# seed A seed for the shuffleing etc.
# ---------------------------------------------------------------------------------------
#
# OUTPUT:
# -----------------------------------------------------------------------------
# X_sample New Matrix containing #samples, from X_bg, potentially with replacement.
# -----------------------------------------------------------------------------
u_sample_with_potential_replace = function(Matrix[Double] X_bg, Integer samples, Boolean always_shuffle = 0, Integer seed)
return (Matrix[Double] X_sample){
number_of_bg_samples = nrow(X_bg)
# expect to not use all from background and subsample from it
num_of_full_X_bg = 0
num_of_remainder_samples = samples
# shuffle background if desired
if(always_shuffle) {
X_bg = u_shuffle(X_bg)
}
# list to store references to generated matrices so we can rbind them in one call
samples_list = list()
# in case we need more than in the background data, use it multiple times with replacement
if(samples >= number_of_bg_samples) {
u_printShapMessage("WARN: More samples ("+toString(samples)+") are requested than available in the background dataset ("+toString(number_of_bg_samples)+"). Using replacement", 1)
# get number of full sets of background by integer division
num_of_full_X_bg = samples %/% number_of_bg_samples
# get remaining samples using modulo
num_of_remainder_samples = samples %% number_of_bg_samples
#use background data once
samples_list = append(samples_list, X_bg)
if(num_of_full_X_bg > 1){
# add shuffled versions of background data
for (i in 1:num_of_full_X_bg-1){
samples_list = append(samples_list, u_shuffle(X_bg))
}
}
}
# sample from background dataset for remaining samples
if (num_of_remainder_samples > 0){
# pick remaining samples
random_samples_indices = sample(number_of_bg_samples, num_of_remainder_samples, seed)
#contingency table to pick rows by multiplication
R_cont = table(random_samples_indices, random_samples_indices, number_of_bg_samples, number_of_bg_samples)
#pick samples by multiplication with contingency table of indices and removing empty rows
samples_list = append(samples_list, removeEmpty(target=t(t(X_bg) %*% R_cont), margin="rows"))
}
if ( length(samples_list) == 1){
#dont copy if only one matrix is in list, since this is a heavy hitter
X_sample = as.matrix(samples_list[1])
} else {
#single call to bind all generated samples into one large matrix
X_sample = rbind(samples_list)
}
}
# Simple utility function to shuffle (from shuffle.dml, but without storing to file). Shuffles rows.
#
# INPUT:
# ---------------------------------------------------------------------------------------
# X Matrix to be shuffled
# ---------------------------------------------------------------------------------------
#
# OUTPUT:
# -----------------------------------------------------------------------------
# X_shuffled Matrix like X but ... shuffled...
# -----------------------------------------------------------------------------
u_shuffle = function(Matrix[Double] X)
return (Matrix[Double] X_shuffled){
num_col = ncol(X)
# Random vector used to shuffle the dataset
y = rand(rows=nrow(X), cols=1, min=0, max=1, pdf="uniform")
X = order(target = cbind(X, y), by = num_col + 1)
X_shuffled = X[,1:num_col]
}
# Simple utility function to create a range of integers from start to end.
#
# INPUT:
# ---------------------------------------------------------------------------------------
# start First integer of range.
# stop First integer of range.
# ---------------------------------------------------------------------------------------
#
# OUTPUT:
# -----------------------------------------------------------------------------
# range Matrix with range from start to end in its cols.
# -----------------------------------------------------------------------------
u_range = function(Integer start, Integer end)
return (Matrix[Double] range){
range = t(cumsum(matrix(1, rows=end-start+1, cols=1)))
range = range+start-1
}
# Replicates rows of the input matrix n-times.
#
# Example:
# [1,2]
# [3,4]
# becomes
# [1,2]
# [1,2]
# [3,4]
# [3,4]
#
# INPUT:
# -----------------------------------------------------------------------------
# M Matrix where rows will be replicated.
# n_times Number of replications.
# -----------------------------------------------------------------------------
#
# OUTPUT:
# -----------------------------------------------------------------------------
# M Matrix of replicated rows.
# -----------------------------------------------------------------------------
u_repeatRows = function(Matrix[Double] M, Integer n_times)
return(Matrix[Double] M){
#get indices for new rows (e.g. 1,1,1,2,2,2 for 2 rows, each replicated 3 times)
indices = ceil(seq(1,nrow(M)*n_times,1) / n_times)
#to one hot, so we get a replication matrix R
R = toOneHot(indices, nrow(M))
#matrix-mulitply to repeat rows
M = R %*% M
}
# Replicates matrix n-times block-wise.
#
# Example:
# [1,2]
# [3,4]
# becomes
# [1,2]
# [3,4]
# [1,2]
# [3,4]
#
# INPUT:
# -----------------------------------------------------------------------------
# M Matrix where rows will be replicated.
# n_times Number of replications.
# -----------------------------------------------------------------------------
#
# OUTPUT:
# -----------------------------------------------------------------------------
# M Matrix of replicated rows.
# -----------------------------------------------------------------------------
u_repeatMatrix = function(Matrix[Double] M, Integer n_times)
return(Matrix[Double] M){
n_rows=nrow(M)
n_cols=ncol(M)
#reshape to row vector
M = matrix(M, rows=1, cols=length(M))
#replicate via outer product
M = matrix(1, rows=n_times, cols=1) %*% M
#reshape to get matrix
M = matrix(M, rows=n_rows*n_times, cols=n_cols)
}
# Like repeatMatrix(), but alows to define parts of matrix as blocks to replicate n-rows as a block.
u_repeatMatrixBlocks = function(Matrix[Double] M, Integer rows_per_block, Integer n_times)
return(Matrix[Double] M){
n_rows=nrow(M)
n_cols=ncol(M)
#reshape to row vector
M = matrix(M, rows=n_rows/rows_per_block, cols=n_cols*rows_per_block)
#repeat block rows
M = u_repeatRows(M, n_times)
#reshape to get matrix
M = matrix(M, rows=n_rows*n_times, cols=n_cols)
}
#utility function to print with shap-explainer-tag
u_printShapMessage = function(String message, Boolean verbose){
if(verbose){
print("shap-explainer::"+message)
}
}