blob: 1f136757aa40af11d913faf804e5098ae159b36d [file] [log] [blame]
#-------------------------------------------------------------
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
#-------------------------------------------------------------
# Min-max normalization (a.k.a. min-max scaling) to range [0,1]. For matrices
# of positive values, this normalization preserves the input sparsity.
#
# INPUT:
# ---------------------------------------------------------------------------------------
# X Input feature matrix of shape n-by-m
# ---------------------------------------------------------------------------------------
#
# OUTPUT:
# ---------------------------------------------------------------------------------------
# Y Modified output feature matrix of shape n-by-m
# cmin Column minima of shape 1-by-m
# cmax Column maxima of shape 1-by-m
# ---------------------------------------------------------------------------------------
m_normalize = function(Matrix[Double] X)
return (Matrix[Double] Y, Matrix[Double] cmin, Matrix[Double] cmax)
{
# compute feature ranges for transformations
cmin = colMins(X);
cmax = colMaxs(X);
# normalize features to range [0,1]
Y = normalizeApply(X, cmin, cmax);
}