blob: eb8e1fdc5dbc570869e755e04bd2781e8941d819 [file] [log] [blame]
#-------------------------------------------------------------
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
#-------------------------------------------------------------
# Solves Cubic Spline Interpolation
#
# Algorithms: implement https://en.wikipedia.org/wiki/Spline_interpolation#Algorithm_to_find_the_interpolating_cubic_spline
# It use natural spline with q1''(x0) == qn''(xn) == 0.0
#
# INPUT:
# ---------------------------------------------------------------------------------------------
# X 1-column matrix of x values knots. It is assumed that x values are
# monotonically increasing and there is no duplicates points in X
# Y 1-column matrix of corresponding y values knots
# inp_x the given input x, for which the cspline will find predicted y
# mode Specifies the method for cspline (DS - Direct Solve, CG - Conjugate Gradient)
# tol Tolerance (epsilon); conjugate graduent procedure terminates early if
# L2 norm of the beta-residual is less than tolerance * its initial norm
# maxi Maximum number of conjugate gradient iterations, 0 = no maximum
# ---------------------------------------------------------------------------------------------
#
# OUTPUT:
# ---------------------------------------------------------------------------------------------------
# pred_Y Predicted value
# K Matrix of k parameters
# ---------------------------------------------------------------------------------------------------
m_cspline = function(Matrix[Double] X, Matrix[Double] Y, Double inp_x,
String mode = "DS", Double tol = -1.0, Integer maxi = -1)
return (Matrix[Double] pred_Y, Matrix[Double] K)
{
if( mode == "CG" & maxi != -1 & tol != -1.0)
{
[pred_Y, K] = csplineCG(X=X, Y=Y, inp_x=inp_x, tol=tol, maxi=maxi);
}
else
{
[pred_Y, K] = csplineDS(X=X, Y=Y, inp_x=inp_x);
}
}