| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| package org.apache.sysds.runtime.compress.cost; |
| |
| import org.apache.sysds.runtime.compress.DMLCompressionException; |
| import org.apache.sysds.runtime.compress.colgroup.AColGroup; |
| import org.apache.sysds.runtime.compress.estim.CompressedSizeInfoColGroup; |
| import org.apache.sysds.runtime.matrix.data.MatrixBlock; |
| |
| public class ComputationCostEstimator extends ACostEstimate { |
| |
| private static final long serialVersionUID = -1205636215389161815L; |
| |
| /** The threshold before the commonValueImpact is starting. */ |
| private static final double cvThreshold = 0.2; |
| |
| private final InstructionTypeCounter ins; |
| |
| protected ComputationCostEstimator(InstructionTypeCounter counts) { |
| this.ins = counts; |
| |
| if(LOG.isDebugEnabled()) |
| LOG.debug(this); |
| } |
| |
| public ComputationCostEstimator(int scans, int decompressions, int overlappingDecompressions, |
| int leftMultiplications, int rightMultiplications, int compressedMultiplication, int dictOps, int indexing, |
| boolean isDensifying) { |
| ins = new InstructionTypeCounter(scans, decompressions, overlappingDecompressions, leftMultiplications, |
| rightMultiplications, compressedMultiplication, dictOps, indexing, isDensifying); |
| |
| } |
| |
| @Override |
| protected double getCostSafe(CompressedSizeInfoColGroup g) { |
| final int nVals = g.getNumVals(); |
| final int nCols = g.getColumns().size(); |
| final int nRows = g.getNumRows(); |
| // assume that it is never fully sparse |
| final double sparsity = (nCols < 3 || ins.isDensifying()) ? 1 : g.getTupleSparsity() + 1E-10; |
| |
| final double commonFraction = g.getLargestOffInstances(); |
| |
| if(g.isEmpty() && !ins.isDensifying()) |
| // set some small cost to empty |
| return getCost(nRows, 1, nCols, 1, 0.00001); |
| else if(g.isEmpty() || g.isConst()) |
| // const or densifying |
| return getCost(nRows, 1, nCols, 1, 1); |
| if(commonFraction > cvThreshold) |
| return getCost(nRows, nRows - g.getLargestOffInstances(), nCols, nVals, sparsity); |
| else |
| return getCost(nRows, nRows, nCols, nVals, sparsity); |
| } |
| |
| /** |
| * Get the cost of a column group. |
| * |
| * @param nRows The total number of rows |
| * @param nRowsScanned Number of rows to process in this specific group |
| * @param nCols Number of columns in the column group |
| * @param nVals Number of unique tuples contained in the group |
| * @param sparsity The sparsity of the unique tuples stored |
| * @return A cost |
| */ |
| public double getCost(int nRows, int nRowsScanned, int nCols, int nVals, double sparsity) { |
| sparsity = (nCols < 3 || sparsity > 0.4) ? 1 : sparsity; |
| |
| double cost = 0; |
| cost += leftMultCost(nRowsScanned, nRows, nCols, nVals, sparsity); |
| cost += scanCost(nRowsScanned, nCols, nVals, sparsity); |
| cost += dictionaryOpsCost(nVals, nCols, sparsity); |
| cost += rightMultCost(nCols, nVals, sparsity); |
| cost += decompressionCost(nVals, nCols, nRowsScanned, sparsity); |
| cost += overlappingDecompressionCost(nRowsScanned); |
| cost += compressedMultiplicationCost(nRowsScanned, nRows, nVals, nCols, sparsity); |
| cost += 100; // base cost |
| if(cost < 0) |
| throw new DMLCompressionException("Ivalid negative cost: " + cost); |
| return cost; |
| } |
| |
| public boolean isDense() { |
| return ins.isDensifying(); |
| } |
| |
| @Override |
| public double getCost(MatrixBlock mb) { |
| double cost = 0; |
| final double nCols = mb.getNumColumns(); |
| final double nRows = mb.getNumRows(); |
| final double sparsity = (nCols < 3 || ins.isDensifying()) ? 1 : mb.getSparsity(); |
| |
| cost += dictionaryOpsCost(nRows, nCols, sparsity); |
| // Naive number of floating point multiplications |
| cost += leftMultCost(0, nRows * nCols * sparsity + nCols); |
| cost += rightMultCost(nRows * nCols * sparsity, nRows * nCols); |
| // Scan cost we set the rows scanned to zero, since they |
| // are not indirectly scanned like in compression |
| cost += scanCost(0, nRows, nCols, sparsity); |
| cost += compressedMultiplicationCost(0, 0, nRows, nCols, sparsity); |
| // decompression cost ... 0 for both overlapping and normal decompression |
| |
| if(cost < 0) |
| throw new DMLCompressionException("Invalid negative cost : " + cost); |
| return cost; |
| } |
| |
| @Override |
| public double getCost(AColGroup cg, int nRows) { |
| return cg.getCost(this, nRows); |
| } |
| |
| @Override |
| public boolean shouldSparsify() { |
| return ins.getLeftMultiplications() > 0 || ins.getCompressedMultiplications() > 0 || |
| ins.getRightMultiplications() > 0; |
| } |
| |
| private double dictionaryOpsCost(double nVals, double nCols, double sparsity) { |
| // Dictionary ops simply goes through dictionary and modify all values. |
| // Therefore the cost is in number of cells in the dictionary. |
| // * 2 because we allocate a output of same size at least |
| return ins.getDictionaryOps() * sparsity * nVals * nCols * 2; |
| } |
| |
| private double leftMultCost(double nRowsScanned, double nRows, double nCols, double nVals, double sparsity) { |
| // Plus nVals * 2 because of allocation of nVals array and scan of that |
| final double preScalingCost = Math.max(nRowsScanned, nRows / 10) + nVals * 2; |
| final double postScalingCost = sparsity * nVals * nCols; |
| return leftMultCost(preScalingCost, postScalingCost); |
| } |
| |
| private double leftMultCost(double preAggregateCost, double postScalingCost) { |
| return ins.getLeftMultiplications() * (preAggregateCost + postScalingCost); |
| } |
| |
| private double rightMultCost(double nVals, double nCols, double sparsity) { |
| final double preMultiplicationCost = sparsity * nCols * nVals; |
| final double allocationCost = nVals; |
| return rightMultCost(preMultiplicationCost, allocationCost); |
| } |
| |
| private double rightMultCost(double preMultiplicationCost, double allocationCost) { |
| return ins.getRightMultiplications() * (preMultiplicationCost + allocationCost); |
| } |
| |
| private double decompressionCost(double nVals, double nCols, double nRowsScanned, double sparsity) { |
| return ins.getDecompressions() * (nCols * nRowsScanned * sparsity); |
| } |
| |
| private double overlappingDecompressionCost(double nRows) { |
| return ins.getOverlappingDecompressions() * nRows; |
| } |
| |
| private double scanCost(double nRowsScanned, double nVals, double nCols, double sparsity) { |
| return ins.getScans() * (nRowsScanned + nVals * nCols * sparsity); |
| } |
| |
| private double compressedMultiplicationCost(double nRowsScanned, double nRows, double nVals, double nCols, |
| double sparsity) { |
| // return _compressedMultiplication * Math.max(nRowsScanned * nCols ,nVals * nCols * sparsity ); |
| return ins.getCompressedMultiplications() * (Math.max(nRowsScanned, nRows / 10) + nVals * nCols * sparsity); |
| } |
| |
| @Override |
| public String toString() { |
| StringBuilder sb = new StringBuilder(); |
| sb.append(super.toString()); |
| sb.append(" : "); |
| sb.append(ins.toString()); |
| return sb.toString(); |
| } |
| } |