blob: c8ff6b6387b3ffdf61cf13fbe6a9f2935c9e5e12 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.sysds.runtime.instructions.spark;
import java.util.Iterator;
import java.util.stream.IntStream;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.PairFlatMapFunction;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.sysds.hops.AggBinaryOp.SparkAggType;
import org.apache.sysds.hops.OptimizerUtils;
import org.apache.sysds.lops.MapMult;
import org.apache.sysds.lops.MapMult.CacheType;
import org.apache.sysds.runtime.DMLRuntimeException;
import org.apache.sysds.runtime.controlprogram.context.ExecutionContext;
import org.apache.sysds.runtime.controlprogram.context.SparkExecutionContext;
import org.apache.sysds.runtime.controlprogram.parfor.stat.InfrastructureAnalyzer;
import org.apache.sysds.runtime.functionobjects.Multiply;
import org.apache.sysds.runtime.functionobjects.Plus;
import org.apache.sysds.runtime.instructions.InstructionUtils;
import org.apache.sysds.runtime.instructions.cp.CPOperand;
import org.apache.sysds.runtime.instructions.spark.data.LazyIterableIterator;
import org.apache.sysds.runtime.instructions.spark.data.PartitionedBroadcast;
import org.apache.sysds.runtime.instructions.spark.functions.FilterNonEmptyBlocksFunction;
import org.apache.sysds.runtime.instructions.spark.utils.RDDAggregateUtils;
import org.apache.sysds.runtime.matrix.data.MatrixBlock;
import org.apache.sysds.runtime.matrix.data.MatrixIndexes;
import org.apache.sysds.runtime.matrix.data.OperationsOnMatrixValues;
import org.apache.sysds.runtime.matrix.operators.AggregateBinaryOperator;
import org.apache.sysds.runtime.matrix.operators.AggregateOperator;
import org.apache.sysds.runtime.matrix.operators.Operator;
import org.apache.sysds.runtime.meta.DataCharacteristics;
import scala.Tuple2;
public class MapmmSPInstruction extends BinarySPInstruction {
private static final Log LOG = LogFactory.getLog(MapmmSPInstruction.class.getName());
private CacheType _type = null;
private boolean _outputEmpty = true;
private SparkAggType _aggtype;
private MapmmSPInstruction(Operator op, CPOperand in1, CPOperand in2, CPOperand out, CacheType type,
boolean outputEmpty, SparkAggType aggtype, String opcode, String istr) {
super(SPType.MAPMM, op, in1, in2, out, opcode, istr);
_type = type;
_outputEmpty = outputEmpty;
_aggtype = aggtype;
}
public static MapmmSPInstruction parseInstruction( String str ) {
String parts[] = InstructionUtils.getInstructionPartsWithValueType(str);
String opcode = parts[0];
if(!opcode.equalsIgnoreCase(MapMult.OPCODE))
throw new DMLRuntimeException("MapmmSPInstruction.parseInstruction():: Unknown opcode " + opcode);
CPOperand in1 = new CPOperand(parts[1]);
CPOperand in2 = new CPOperand(parts[2]);
CPOperand out = new CPOperand(parts[3]);
CacheType type = CacheType.valueOf(parts[4]);
boolean outputEmpty = Boolean.parseBoolean(parts[5]);
SparkAggType aggtype = SparkAggType.valueOf(parts[6]);
AggregateBinaryOperator aggbin = InstructionUtils.getMatMultOperator(1);
return new MapmmSPInstruction(aggbin, in1, in2, out, type, outputEmpty, aggtype, opcode, str);
}
@Override
public void processInstruction(ExecutionContext ec) {
SparkExecutionContext sec = (SparkExecutionContext)ec;
CacheType type = _type;
String rddVar = type.isRight() ? input1.getName() : input2.getName();
String bcastVar = type.isRight() ? input2.getName() : input1.getName();
DataCharacteristics mcRdd = sec.getDataCharacteristics(rddVar);
DataCharacteristics mcBc = sec.getDataCharacteristics(bcastVar);
//get input rdd with preferred number of partitions to avoid unnecessary repartition
JavaPairRDD<MatrixIndexes,MatrixBlock> in1 = sec.getBinaryMatrixBlockRDDHandleForVariable(rddVar,
(requiresFlatMapFunction(type, mcBc) && requiresRepartitioning(
type, mcRdd, mcBc, sec.getSparkContext().defaultParallelism())) ?
getNumRepartitioning(type, mcRdd, mcBc) : -1, _outputEmpty);
//investigate if a repartitioning - including a potential flip of broadcast and rdd
//inputs - is required to ensure moderately sized output partitions (2GB limitation)
if( requiresFlatMapFunction(type, mcBc) &&
requiresRepartitioning(type, mcRdd, mcBc, in1.getNumPartitions()) )
{
int numParts = getNumRepartitioning(type, mcRdd, mcBc);
int numParts2 = getNumRepartitioning(type.getFlipped(), mcBc, mcRdd);
if( numParts2 > numParts ) { //flip required
type = type.getFlipped();
rddVar = type.isRight() ? input1.getName() : input2.getName();
bcastVar = type.isRight() ? input2.getName() : input1.getName();
mcRdd = sec.getDataCharacteristics(rddVar);
mcBc = sec.getDataCharacteristics(bcastVar);
in1 = sec.getBinaryMatrixBlockRDDHandleForVariable(rddVar);
LOG.warn("Mapmm: Switching rdd ('"+bcastVar+"') and broadcast ('"+rddVar+"') inputs "
+ "for repartitioning because this allows better control of output partition "
+ "sizes ("+numParts+" < "+numParts2+").");
}
}
//get inputs
PartitionedBroadcast<MatrixBlock> in2 = sec.getBroadcastForVariable(bcastVar);
//empty input block filter
if( !_outputEmpty )
in1 = in1.filter(new FilterNonEmptyBlocksFunction());
//execute mapmm and aggregation if necessary and put output into symbol table
if( _aggtype == SparkAggType.SINGLE_BLOCK )
{
JavaRDD<MatrixBlock> out = in1.map(new RDDMapMMFunction2(type, in2));
MatrixBlock out2 = RDDAggregateUtils.sumStable(out);
//put output block into symbol table (no lineage because single block)
//this also includes implicit maintenance of matrix characteristics
sec.setMatrixOutput(output.getName(), out2);
}
else //MULTI_BLOCK or NONE
{
JavaPairRDD<MatrixIndexes,MatrixBlock> out = null;
if( requiresFlatMapFunction(type, mcBc) ) {
if( requiresRepartitioning(type, mcRdd, mcBc, in1.getNumPartitions()) ) {
int numParts = getNumRepartitioning(type, mcRdd, mcBc);
LOG.warn("Mapmm: Repartition input rdd '"+rddVar+"' from "+in1.getNumPartitions()+" to "
+numParts+" partitions to satisfy size restrictions of output partitions.");
in1 = in1.repartition(numParts);
}
out = in1.flatMapToPair( new RDDFlatMapMMFunction(type, in2) );
}
else if( preservesPartitioning(mcRdd, type) )
out = in1.mapPartitionsToPair(new RDDMapMMPartitionFunction(type, in2), true);
else
out = in1.mapToPair( new RDDMapMMFunction(type, in2) );
//empty output block filter
if( !_outputEmpty )
out = out.filter(new FilterNonEmptyBlocksFunction());
if( _aggtype == SparkAggType.MULTI_BLOCK )
out = RDDAggregateUtils.sumByKeyStable(out, false);
//put output RDD handle into symbol table
sec.setRDDHandleForVariable(output.getName(), out);
sec.addLineageRDD(output.getName(), rddVar);
sec.addLineageBroadcast(output.getName(), bcastVar);
//update output statistics if not inferred
updateBinaryMMOutputDataCharacteristics(sec, true);
}
}
private static boolean preservesPartitioning(DataCharacteristics mcIn, CacheType type )
{
if( type == CacheType.LEFT )
return mcIn.dimsKnown() && mcIn.getRows() <= mcIn.getBlocksize();
else // RIGHT
return mcIn.dimsKnown() && mcIn.getCols() <= mcIn.getBlocksize();
}
/**
* Indicates if there is a need to apply a flatmap rdd operation because a single
* input block creates multiple output blocks.
*
* @param type cache type
* @param mcBc matrix characteristics
* @return true if single input block creates multiple output blocks
*/
private static boolean requiresFlatMapFunction( CacheType type, DataCharacteristics mcBc)
{
return (type == CacheType.LEFT && mcBc.getRows() > mcBc.getBlocksize())
|| (type == CacheType.RIGHT && mcBc.getCols() > mcBc.getBlocksize());
}
/**
* Indicates if there is a need to repartition the input RDD in order to increase the
* degree of parallelism or reduce the output partition size (e.g., Spark still has a
* 2GB limitation of partitions)
*
* @param type cache type
* @param mcRdd rdd matrix characteristics
* @param mcBc ?
* @param numPartitions number of partitions
* @return true need to repartition input RDD
*/
private static boolean requiresRepartitioning(CacheType type, DataCharacteristics mcRdd, DataCharacteristics mcBc, int numPartitions ) {
//note: as repartitioning requires data shuffling, we try to be very conservative here
//approach: we repartition, if there is a "outer-product-like" mm (single block common dimension),
//the size of output partitions (assuming dense) exceeds a size of 1GB
boolean isLeft = (type == CacheType.LEFT);
boolean isOuter = isLeft ?
(mcRdd.getRows() <= mcRdd.getBlocksize()) :
(mcRdd.getCols() <= mcRdd.getBlocksize());
boolean isLargeOutput = (OptimizerUtils.estimatePartitionedSizeExactSparsity(isLeft?mcBc.getRows():mcRdd.getRows(),
isLeft?mcRdd.getCols():mcBc.getCols(), mcRdd.getBlocksize(), 1.0) / numPartitions) > 1024*1024*1024;
return isOuter && isLargeOutput && mcRdd.dimsKnown() && mcBc.dimsKnown()
&& numPartitions < getNumRepartitioning(type, mcRdd, mcBc);
}
/**
* Computes the number of target partitions for repartitioning input rdds in case of
* outer-product-like mm.
*
* @param type cache type
* @param mcRdd rdd matrix characteristics
* @param mcBc ?
* @return number of target partitions for repartitioning
*/
private static int getNumRepartitioning(CacheType type, DataCharacteristics mcRdd, DataCharacteristics mcBc ) {
boolean isLeft = (type == CacheType.LEFT);
long sizeOutput = (OptimizerUtils.estimatePartitionedSizeExactSparsity(isLeft?mcBc.getRows():mcRdd.getRows(),
isLeft?mcRdd.getCols():mcBc.getCols(), mcRdd.getBlocksize(), 1.0));
long numParts = sizeOutput / InfrastructureAnalyzer.getHDFSBlockSize();
return (int)Math.min(numParts, (isLeft?mcRdd.getNumColBlocks():mcRdd.getNumRowBlocks()));
}
private static class RDDMapMMFunction implements PairFunction<Tuple2<MatrixIndexes, MatrixBlock>, MatrixIndexes, MatrixBlock>
{
private static final long serialVersionUID = 8197406787010296291L;
private final CacheType _type;
private final AggregateBinaryOperator _op;
private final PartitionedBroadcast<MatrixBlock> _pbc;
public RDDMapMMFunction( CacheType type, PartitionedBroadcast<MatrixBlock> binput ) {
_type = type;
_pbc = binput;
_op = InstructionUtils.getMatMultOperator(1);
}
@Override
public Tuple2<MatrixIndexes, MatrixBlock> call( Tuple2<MatrixIndexes, MatrixBlock> arg0 )
throws Exception
{
MatrixIndexes ixIn = arg0._1();
MatrixBlock blkIn = arg0._2();
MatrixIndexes ixOut = new MatrixIndexes();
MatrixBlock blkOut = new MatrixBlock();
if( _type == CacheType.LEFT )
{
//get the right hand side matrix
MatrixBlock left = _pbc.getBlock(1, (int)ixIn.getRowIndex());
//execute matrix-vector mult
OperationsOnMatrixValues.matMult(new MatrixIndexes(1,ixIn.getRowIndex()),
left, ixIn, blkIn, ixOut, blkOut, _op);
}
else //if( _type == CacheType.RIGHT )
{
//get the right hand side matrix
MatrixBlock right = _pbc.getBlock((int)ixIn.getColumnIndex(), 1);
//execute matrix-vector mult
OperationsOnMatrixValues.matMult(ixIn, blkIn,
new MatrixIndexes(ixIn.getColumnIndex(),1), right, ixOut, blkOut, _op);
}
//output new tuple
return new Tuple2<>(ixOut, blkOut);
}
}
/**
* Similar to RDDMapMMFunction but with single output block
*/
private static class RDDMapMMFunction2 implements Function<Tuple2<MatrixIndexes, MatrixBlock>, MatrixBlock>
{
private static final long serialVersionUID = -2753453898072910182L;
private final CacheType _type;
private final AggregateBinaryOperator _op;
private final PartitionedBroadcast<MatrixBlock> _pbc;
public RDDMapMMFunction2( CacheType type, PartitionedBroadcast<MatrixBlock> binput )
{
_type = type;
_pbc = binput;
//created operator for reuse
AggregateOperator agg = new AggregateOperator(0, Plus.getPlusFnObject());
_op = new AggregateBinaryOperator(Multiply.getMultiplyFnObject(), agg);
}
@Override
public MatrixBlock call( Tuple2<MatrixIndexes, MatrixBlock> arg0 )
throws Exception
{
MatrixIndexes ixIn = arg0._1();
MatrixBlock blkIn = arg0._2();
if( _type == CacheType.LEFT )
{
//get the right hand side matrix
MatrixBlock left = _pbc.getBlock(1, (int)ixIn.getRowIndex());
//execute matrix-vector mult
return OperationsOnMatrixValues.matMult(
left, blkIn, new MatrixBlock(), _op);
}
else //if( _type == CacheType.RIGHT )
{
//get the right hand side matrix
MatrixBlock right = _pbc.getBlock((int)ixIn.getColumnIndex(), 1);
//execute matrix-vector mult
return OperationsOnMatrixValues.matMult(
blkIn, right, new MatrixBlock(), _op);
}
}
}
private static class RDDMapMMPartitionFunction implements PairFlatMapFunction<Iterator<Tuple2<MatrixIndexes, MatrixBlock>>, MatrixIndexes, MatrixBlock>
{
private static final long serialVersionUID = 1886318890063064287L;
private final CacheType _type;
private final AggregateBinaryOperator _op;
private final PartitionedBroadcast<MatrixBlock> _pbc;
public RDDMapMMPartitionFunction( CacheType type, PartitionedBroadcast<MatrixBlock> binput )
{
_type = type;
_pbc = binput;
//created operator for reuse
AggregateOperator agg = new AggregateOperator(0, Plus.getPlusFnObject());
_op = new AggregateBinaryOperator(Multiply.getMultiplyFnObject(), agg);
}
@Override
public LazyIterableIterator<Tuple2<MatrixIndexes, MatrixBlock>> call(Iterator<Tuple2<MatrixIndexes, MatrixBlock>> arg0)
throws Exception
{
return new MapMMPartitionIterator(arg0);
}
/**
* Lazy mapmm iterator to prevent materialization of entire partition output in-memory.
* The implementation via mapPartitions is required to preserve partitioning information,
* which is important for performance.
*/
private class MapMMPartitionIterator extends LazyIterableIterator<Tuple2<MatrixIndexes, MatrixBlock>>
{
public MapMMPartitionIterator(Iterator<Tuple2<MatrixIndexes, MatrixBlock>> in) {
super(in);
}
@Override
protected Tuple2<MatrixIndexes, MatrixBlock> computeNext(Tuple2<MatrixIndexes, MatrixBlock> arg)
throws Exception
{
MatrixIndexes ixIn = arg._1();
MatrixBlock blkIn = arg._2();
MatrixBlock blkOut = new MatrixBlock();
if( _type == CacheType.LEFT )
{
//get the right hand side matrix
MatrixBlock left = _pbc.getBlock(1, (int)ixIn.getRowIndex());
//execute index preserving matrix multiplication
OperationsOnMatrixValues.matMult(left, blkIn, blkOut, _op);
}
else //if( _type == CacheType.RIGHT )
{
//get the right hand side matrix
MatrixBlock right = _pbc.getBlock((int)ixIn.getColumnIndex(), 1);
//execute index preserving matrix multiplication
OperationsOnMatrixValues.matMult(blkIn, right, blkOut, _op);
}
return new Tuple2<>(ixIn, blkOut);
}
}
}
private static class RDDFlatMapMMFunction implements PairFlatMapFunction<Tuple2<MatrixIndexes, MatrixBlock>, MatrixIndexes, MatrixBlock>
{
private static final long serialVersionUID = -6076256569118957281L;
private final CacheType _type;
private final AggregateBinaryOperator _op;
private final PartitionedBroadcast<MatrixBlock> _pbc;
public RDDFlatMapMMFunction( CacheType type, PartitionedBroadcast<MatrixBlock> binput ) {
_type = type;
_pbc = binput;
_op = InstructionUtils.getMatMultOperator(1);
}
@Override
public Iterator<Tuple2<MatrixIndexes, MatrixBlock>> call( Tuple2<MatrixIndexes, MatrixBlock> arg0 )
throws Exception
{
MatrixIndexes ixIn = arg0._1();
MatrixBlock blkIn = arg0._2();
if( _type == CacheType.LEFT ) {
//for all matching left-hand-side blocks, returned as lazy iterator
return IntStream.range(1, _pbc.getNumRowBlocks()+1).mapToObj(i ->
new Tuple2<>(new MatrixIndexes(i, ixIn.getColumnIndex()),
OperationsOnMatrixValues.matMult(_pbc.getBlock(i, (int)ixIn.getRowIndex()), blkIn,
new MatrixBlock(), _op))).iterator();
}
else { //RIGHT
//for all matching right-hand-side blocks, returned as lazy iterator
return IntStream.range(1, _pbc.getNumColumnBlocks()+1).mapToObj(j ->
new Tuple2<>(new MatrixIndexes(ixIn.getRowIndex(), j),
OperationsOnMatrixValues.matMult(blkIn, _pbc.getBlock((int)ixIn.getColumnIndex(), j),
new MatrixBlock(), _op))).iterator();
}
}
}
}