blob: 1e8a1510509f14ef3c9f667fa229fba3fcf26021 [file] [log] [blame]
#-------------------------------------------------------------
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
#-------------------------------------------------------------
args = commandArgs(TRUE)
options(digits=22)
library("Matrix")
image_transform_linearized = function(img_in, out_w, out_h, a, b, c, d, e, f, fill_value, s_cols, s_rows) {
divisor = a * e - b * d
if (divisor == 0) {
print("Inverse matrix does not exist! Returning input.")
img_out = img_in
}
else {
orig_w = s_cols
orig_h = s_rows
T.inv = matrix(0, nrow=3, ncol=3)
T.inv[1, 1] = e / divisor
T.inv[1, 2] = -b / divisor
T.inv[1, 3] = (b * f - c * e) / divisor
T.inv[2, 1] = -d / divisor
T.inv[2, 2] = a / divisor
T.inv[2, 3] = (c * d - a * f) / divisor
T.inv[3, 3] = 1
img_out = matrix(fill_value, nrow=nrow(img_in), ncol=out_w*out_h)
coords = matrix(1, nrow=3, ncol=out_w*out_h)
coords[1,] = t((seq(0, out_w*out_h-1) %% out_w) + 0.5)
coords[2,] = t((seq(0, out_w*out_h-1) %/% out_w) + 0.5)
coords = floor(T.inv %*% coords) + 1
inx = coords[1,]
iny = coords[2,]
ind = (iny-1)*orig_w + inx
for (cell in 1:(out_w*out_h)) {
inxi = coords[1, cell]
inyi = coords[2, cell]
indi = ind[cell]
if ((0 < inxi) & (inxi <= orig_w) & (0 < inyi) & (inyi <= orig_h)) {
img_out[,cell] = img_in[,indi]
}
}
img_out = matrix(img_out, nrow=nrow(img_in), ncol=out_w*out_h)
}
img_out
}
input = as.matrix(readMM(paste(args[1], "A.mtx", sep="")))
input = matrix(input, ncol=as.integer(args[3]), nrow=as.integer(args[4]))
transformed = image_transform_linearized(input, as.integer(args[5]), as.integer(args[6]), as.double(args[7]),
as.double(args[8]), as.double(args[9]), as.double(args[10]), as.double(args[11]), as.double(args[12]),
as.double(args[13]), as.integer(args[14]),as.integer(args[15]))
writeMM(as(transformed, "CsparseMatrix"), paste(args[2], "B", sep=""))