blob: 257b634aefb0ebb5358104c77d8b921312e46e9d [file] [log] [blame]
#-------------------------------------------------------------
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
#-------------------------------------------------------------
# Intended to solve cubic natural spline, using R, in order to compare against the DML implementation
# INPUT 1: Matrix X [rows, 1]
# INPUT 2: Matrix Y [rows, 1]
# OUTPUT : 1x1 matrix of value of the interpolated y for given input x
#
# Assume that $CSPLINE_HOME is set to the home of the R script
# Assume input and output directories are $CSPLINE_HOME/in/ and $CSPLINE_HOME/expected/
# Rscript $CSPLINE_HOME/CsplineDs.R $CSPLINE_HOME/in/X.mtx $CSPLINE_HOME/in/Y.mtx 4.5 $CSPLINE_HOME/expected/y.mtx
args <- commandArgs (TRUE);
library ("Matrix");
X_here <- readMM (args[1]); # (paste (args[1], "X.mtx", sep=""));
Y_here <- readMM (args[2]); # (paste (args[2], "Y.mtx", sep=""));
inp_x <- args[3]
pred_y_here <- args[4]
X_matrix = as.matrix (X_here);
Y_matrix = as.matrix (Y_here);
sf<-splinefun(X_matrix, Y_matrix, method="natural")
pred_y = sf(inp_x)
print(paste("For inp_x = ", inp_x, " Calculated y = ", pred_y))
writeMM(as(pred_y, "CsparseMatrix") , pred_y_here);