| #------------------------------------------------------------- |
| # |
| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| # |
| #------------------------------------------------------------- |
| |
| args <- commandArgs(TRUE) |
| |
| library("Matrix") |
| library("naivebayes") |
| |
| D = as.matrix(readMM(paste(args[1], "D.mtx", sep=""))) |
| C = as.matrix(readMM(paste(args[1], "C.mtx", sep=""))) |
| laplace <- as.numeric(args[3]) |
| |
| # divide D into "train" and "test" data |
| numRows = nrow(D) |
| trainSize = numRows * 0.8 |
| |
| trainData = D[1:trainSize, ] |
| testData = D[(trainSize+1):numRows, ] |
| y <- factor(C[1:trainSize]) |
| |
| # The Naive Bayes Predict need to unique column name |
| features <- paste0("V", seq_len(ncol(trainData))) |
| colnames(trainData) <- features |
| colnames(testData) <- features |
| |
| # Create model base on train data |
| model <- multinomial_naive_bayes(x = trainData, y = y, laplace = laplace) |
| |
| # The SystemDS DML scripts based on YRaw data |
| # and the "naivebayes" predict function in R |
| # return probabilities matrix |
| # Example: YRaw <- predict(model, newdata = testData, type = "prob") |
| |
| # We need to return "Raw" values |
| lev <- model$levels |
| prior <- model$prior |
| params <- t(model$params) |
| YRaw <- tcrossprod(testData, log(params)) |
| |
| for (ith_class in seq_along(lev)) { |
| YRaw[ ,ith_class] <- YRaw[ ,ith_class] + log(prior[ith_class]) |
| } |
| |
| Y <- max.col(YRaw, ties.method="last") |
| |
| # write out the predict |
| writeMM(as(YRaw, "CsparseMatrix"), paste(args[4], "YRaw", sep="")) |
| writeMM(as(Y, "CsparseMatrix"), paste(args[4], "Y", sep="")) |