blob: 18fcb9e9490233aada43e5b17c24c643a893ec0b [file] [log] [blame]
#-------------------------------------------------------------
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
#-------------------------------------------------------------
args <- commandArgs(TRUE)
library("Matrix")
library("naivebayes")
D = as.matrix(readMM(paste(args[1], "D.mtx", sep="")))
C = as.matrix(readMM(paste(args[1], "C.mtx", sep="")))
laplace <- as.numeric(args[3])
# divide D into "train" and "test" data
numRows = nrow(D)
trainSize = numRows * 0.8
trainData = D[1:trainSize, ]
testData = D[(trainSize+1):numRows, ]
y <- factor(C[1:trainSize])
# The Naive Bayes Predict need to unique column name
features <- paste0("V", seq_len(ncol(trainData)))
colnames(trainData) <- features
colnames(testData) <- features
# Create model base on train data
model <- multinomial_naive_bayes(x = trainData, y = y, laplace = laplace)
# The SystemDS DML scripts based on YRaw data
# and the "naivebayes" predict function in R
# return probabilities matrix
# Example: YRaw <- predict(model, newdata = testData, type = "prob")
# We need to return "Raw" values
lev <- model$levels
prior <- model$prior
params <- t(model$params)
YRaw <- tcrossprod(testData, log(params))
for (ith_class in seq_along(lev)) {
YRaw[ ,ith_class] <- YRaw[ ,ith_class] + log(prior[ith_class])
}
Y <- max.col(YRaw, ties.method="last")
# write out the predict
writeMM(as(YRaw, "CsparseMatrix"), paste(args[4], "YRaw", sep=""))
writeMM(as(Y, "CsparseMatrix"), paste(args[4], "Y", sep=""))