blob: f665e3467ea68ddc1b58189ab5673734437f50af [file] [log] [blame]
#-------------------------------------------------------------
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
#-------------------------------------------------------------
Cholesky = function(Matrix[double] A, int nb) return(Matrix[double] L) {
n = ncol(A)
if (n <= nb) {
L = cholesky(A)
}
else {
k = as.integer(floor(n/2))
A11 = A[1:k,1:k]
A21 = A[k+1:n,1:k]
A22 = A[k+1:n,k+1:n]
L11 = Cholesky(A11, nb)
L11inv = U_triangular_inv(t(L11))
L21 = A21 %*% L11inv
A22 = A22 - L21 %*% t(L21)
L22 = Cholesky(A22, nb)
L12 = matrix(0, nrow(L11), ncol(L22))
L = rbind(cbind(L11, L12), cbind(L21, L22))
}
}
Inverse = function(Matrix[double] A, int nb) return(Matrix[double] X) {
# TODO: Some recent papers discuss Block-Recursive algorithm for
# matrix inverse which can be explored instead of QR decomposition
[Q, R] = QR(A, nb)
Rinv = U_triangular_inv(R)
X = R %*% t(Q)
}
LU = function(Matrix[double] A, int nb) return(Matrix[double] P, Matrix[double] L, Matrix[double] U) {
n = ncol(A)
if (n <= nb) {
[P, L, U] = lu(A)
}
else {
k = as.integer(floor(n/2))
A11 = A[1:k,1:k]
A12 = A[1:k,k+1:n]
A21 = A[k+1:n,1:k]
A22 = A[k+1:n,k+1:n]
[P11, L11, U11] = LU(A11, nb)
L11inv = L_triangular_inv(L11)
U11inv = U_triangular_inv(U11)
U12 = L11inv %*% (P11 %*% A12)
A22 = A22 - A21 %*% U11inv %*% U12
[P22, L22, U22] = LU(A22, nb)
L21 = P22 %*% A21 %*% U11inv
Z12 = matrix(0, nrow(A11), ncol(A22))
Z21 = matrix(0, nrow(A22), ncol(A11))
L = rbind(cbind(L11, Z12), cbind(L21, L22))
U = rbind(cbind(U11, U12), cbind(Z21, U22))
P = rbind(cbind(P11, Z12), cbind(Z21, P22))
}
}
QR = function(Matrix[double] A, int nb) return(Matrix[double] Q, Matrix[double] R) {
n = ncol(A)
if (n <= nb) {
[H, R] = qr(A)
Q = QfromH(H)
R = R[1:n, 1:n]
}
else {
k = floor(n/2)
A1 = A[,1:k]
A2 = A[,k+1:n]
[Q1, R11] = QR(A1, nb)
R12 = t(Q1) %*% A2
A2 = A2 - Q1 %*% R12
[Q2, R22] = QR(A2, nb)
R21 = matrix(0, nrow(R22), ncol(R11))
Q = cbind(Q1, Q2)
R = rbind(cbind(R11, R12), cbind(R21, R22))
}
}
# calculate Q from Housholder matrix
QfromH = function(Matrix[double] H) return(Matrix[double] Q) {
m = nrow(H);
n = ncol(H);
ones = matrix(1, m, 1);
eye = diag(ones);
Q = eye[,1:n];
for (j in n:1) {
v = H[j:m,j]
b = as.scalar(2/(t(v) %*% v))
Q[j:m, j:n] = Q[j:m, j:n] - (b * v) %*% (t(v) %*% Q[j:m, j:n])
}
}
Solve = function(Matrix[double] A, Matrix[double] b, int nb) return(Matrix[double] x) {
# TODO: using thin QR may accumulate higher numerical errors.
# Some modifications as suggested by Golub may be explored
[Q, R] = QR(A, nb)
Rinv = U_triangular_inv(R)
x = Rinv %*% t(Q) %*% b
}
# Inverse of lower triangular matrix
L_triangular_inv = function(Matrix[double] L) return(Matrix[double] A) {
n = ncol(L)
if (n == 1) {
A = 1/L[1,1]
}
else if (n == 2) {
A = matrix(0, 2, 2)
A[1,1] = L[2,2]
A[2,2] = L[1,1]
A[2,1] = -L[2,1]
A = A/(as.scalar(L[1,1] * L[2,2]))
}
else {
k = as.integer(floor(n/2))
L11 = L[1:k,1:k]
L21 = L[k+1:n,1:k]
L22 = L[k+1:n,k+1:n]
A11 = L_triangular_inv(L11)
A22 = L_triangular_inv(L22)
A12 = matrix(0, nrow(A11), ncol(A22))
A21 = -A22 %*% L21 %*% A11
A = rbind(cbind(A11, A12), cbind(A21, A22))
}
}
# Inverse of upper triangular matrix
U_triangular_inv = function(Matrix[double] U) return(Matrix[double] A) {
n = ncol(U)
if (n == 1) {
A = 1/U[1,1]
}
else if (n == 2) {
A = matrix(0, 2, 2)
A[1,1] = U[2,2]
A[2,2] = U[1,1]
A[1,2] = -U[1,2]
A = A/(as.scalar(U[1,1] * U[2,2]))
}
else {
k = as.integer(floor(n/2))
U11 = U[1:k,1:k]
U12 = U[1:k,k+1:n]
U22 = U[k+1:n,k+1:n]
A11 = U_triangular_inv(U11)
A22 = U_triangular_inv(U22)
A12 = -A11 %*% U12 %*% A22
A21 = matrix(0, nrow(A22), ncol(A11))
A = rbind(cbind(A11, A12), cbind(A21, A22))
}
}