blob: b2919b28d40ddd64fd1532405d48de04c0cb6e5c [file] [log] [blame]
#-------------------------------------------------------------
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
#-------------------------------------------------------------
/*
* MNIST LeNet Example
*/
# Imports
source("nn/layers/affine.dml") as affine
source("nn/layers/conv2d_builtin.dml") as conv2d
source("nn/layers/cross_entropy_loss.dml") as cross_entropy_loss
source("nn/layers/dropout.dml") as dropout
source("nn/layers/l2_reg.dml") as l2_reg
source("nn/layers/max_pool2d_builtin.dml") as max_pool2d
source("nn/layers/relu.dml") as relu
source("nn/layers/softmax.dml") as softmax
source("nn/optim/sgd_nesterov.dml") as sgd_nesterov
train = function(matrix[double] X, matrix[double] Y,
matrix[double] X_val, matrix[double] Y_val,
int C, int Hin, int Win, int batch_size,
int parallel_batches, int epochs)
return (matrix[double] W1, matrix[double] b1,
matrix[double] W2, matrix[double] b2,
matrix[double] W3, matrix[double] b3,
matrix[double] W4, matrix[double] b4) {
/*
* Trains a convolutional net using the "LeNet" architecture using
* distributed synchronous SGD.
*
* The input matrix, X, has N examples, each represented as a 3D
* volume unrolled into a single vector. The targets, Y, have K
* classes, and are one-hot encoded.
*
* Inputs:
* - X: Input data matrix, of shape (N, C*Hin*Win).
* - Y: Target matrix, of shape (N, K).
* - X_val: Input validation data matrix, of shape (N, C*Hin*Win).
* - Y_val: Target validation matrix, of shape (N, K).
* - C: Number of input channels (dimensionality of input depth).
* - Hin: Input height.
* - Win: Input width.
* - batch_size: Number of examples in each batch.
* - parallel_batches: Number of batches to run in parallel.
* - epochs: Total number of full training loops over the full data set.
*
* Outputs:
* - W1: 1st layer weights (parameters) matrix, of shape (F1, C*Hf*Wf).
* - b1: 1st layer biases vector, of shape (F1, 1).
* - W2: 2nd layer weights (parameters) matrix, of shape (F2, F1*Hf*Wf).
* - b2: 2nd layer biases vector, of shape (F2, 1).
* - W3: 3rd layer weights (parameters) matrix, of shape (F2*(Hin/4)*(Win/4), N3).
* - b3: 3rd layer biases vector, of shape (1, N3).
* - W4: 4th layer weights (parameters) matrix, of shape (N3, K).
* - b4: 4th layer biases vector, of shape (1, K).
*/
N = nrow(X)
K = ncol(Y)
# Create network:
# conv1 -> relu1 -> pool1 -> conv2 -> relu2 -> pool2 -> affine3 -> relu3 -> affine4 -> softmax
Hf = 5 # filter height
Wf = 5 # filter width
stride = 1
pad = 2 # For same dimensions, (Hf - stride) / 2
F1 = 32 # num conv filters in conv1
F2 = 64 # num conv filters in conv2
N3 = 512 # num nodes in affine3
# Note: affine4 has K nodes, which is equal to the number of target dimensions (num classes)
[W1, b1] = conv2d::init(F1, C, Hf, Wf) # inputs: (N, C*Hin*Win)
[W2, b2] = conv2d::init(F2, F1, Hf, Wf) # inputs: (N, F1*(Hin/2)*(Win/2))
[W3, b3] = affine::init(F2*(Hin/2/2)*(Win/2/2), N3) # inputs: (N, F2*(Hin/2/2)*(Win/2/2))
[W4, b4] = affine::init(N3, K) # inputs: (N, N3)
W4 = W4 / sqrt(2) # different initialization, since being fed into softmax, instead of relu
# Initialize SGD w/ Nesterov momentum optimizer
lr = 0.01 # learning rate
mu = 0.9 #0.5 # momentum
decay = 0.95 # learning rate decay constant
vW1 = sgd_nesterov::init(W1); vb1 = sgd_nesterov::init(b1)
vW2 = sgd_nesterov::init(W2); vb2 = sgd_nesterov::init(b2)
vW3 = sgd_nesterov::init(W3); vb3 = sgd_nesterov::init(b3)
vW4 = sgd_nesterov::init(W4); vb4 = sgd_nesterov::init(b4)
# Regularization
lambda = 5e-04
# Optimize
print("Starting optimization")
group_batch_size = parallel_batches*batch_size
groups = as.integer(ceil(N/group_batch_size))
print("Total Epochs: "+epochs+", Batch size: "+batch_size+
", Degree of parallelism: "+parallel_batches+", Group batch size: "+group_batch_size+
", Num groups: "+groups)
# Loop over the dataset multiple times
for (e in 1:epochs) {
# Grab groups of mini-batches
for (g in 1:groups) {
# Get next group of mini-batches
# NOTE: At the end of the dataset, the last mini-batch in this group could be smaller than
# the other groups.
group_beg = ((g-1) * group_batch_size) %% N + 1
group_end = min(N, group_beg + group_batch_size - 1)
X_group_batch = X[group_beg:group_end,]
y_group_batch = Y[group_beg:group_end,]
# Data structure to store gradients computed in parallel
dW1_agg = matrix(0, rows=parallel_batches, cols=nrow(W1)*ncol(W1))
dW2_agg = matrix(0, rows=parallel_batches, cols=nrow(W2)*ncol(W2))
dW3_agg = matrix(0, rows=parallel_batches, cols=nrow(W3)*ncol(W3))
dW4_agg = matrix(0, rows=parallel_batches, cols=nrow(W4)*ncol(W4))
db1_agg = matrix(0, rows=parallel_batches, cols=nrow(b1)*ncol(b1))
db2_agg = matrix(0, rows=parallel_batches, cols=nrow(b2)*ncol(b2))
db3_agg = matrix(0, rows=parallel_batches, cols=nrow(b3)*ncol(b3))
db4_agg = matrix(0, rows=parallel_batches, cols=nrow(b4)*ncol(b4))
# Run graph on each mini-batch in this group in parallel (ideally on multiple GPUs)
parfor (j in 1:parallel_batches) {
# Get a mini-batch in this group
beg = ((j-1) * batch_size) %% nrow(X_group_batch) + 1
end = min(nrow(X_group_batch), beg + batch_size - 1)
X_batch = X_group_batch[beg:end,]
y_batch = y_group_batch[beg:end,]
# Enable for debugging:
#print("Epoch: "+e+"\t Group: "+g+"\t j: "+j+"\t nrow(X_batch): "+nrow(X_batch))
# Compute forward pass
## layer 1: conv1 -> relu1 -> pool1
[outc1, Houtc1, Woutc1] = conv2d::forward(X_batch, W1, b1, C, Hin, Win, Hf, Wf,
stride, stride, pad, pad)
outr1 = relu::forward(outc1)
[outp1, Houtp1, Woutp1] = max_pool2d::forward(outr1, F1, Houtc1, Woutc1, Hf=2, Wf=2,
strideh=2, stridew=2, pad=0, pad=0)
## layer 2: conv2 -> relu2 -> pool2
[outc2, Houtc2, Woutc2] = conv2d::forward(outp1, W2, b2, F1, Houtp1, Woutp1, Hf, Wf,
stride, stride, pad, pad)
outr2 = relu::forward(outc2)
[outp2, Houtp2, Woutp2] = max_pool2d::forward(outr2, F2, Houtc2, Woutc2, Hf=2, Wf=2,
strideh=2, stridew=2, pad=0, pad=0)
## layer 3: affine3 -> relu3 -> dropout
outa3 = affine::forward(outp2, W3, b3)
outr3 = relu::forward(outa3)
[outd3, maskd3] = dropout::forward(outr3, 0.5, -1)
## layer 4: affine4 -> softmax
outa4 = affine::forward(outd3, W4, b4)
probs = softmax::forward(outa4)
# Compute data backward pass
## loss:
dprobs = cross_entropy_loss::backward(probs, y_batch)
## layer 4: affine4 -> softmax
douta4 = softmax::backward(dprobs, outa4)
[doutd3, dW4, db4] = affine::backward(douta4, outr3, W4, b4)
## layer 3: affine3 -> relu3 -> dropout
doutr3 = dropout::backward(doutd3, outr3, 0.5, maskd3)
douta3 = relu::backward(doutr3, outa3)
[doutp2, dW3, db3] = affine::backward(douta3, outp2, W3, b3)
## layer 2: conv2 -> relu2 -> pool2
doutr2 = max_pool2d::backward(doutp2, Houtp2, Woutp2, outr2, F2, Houtc2, Woutc2, Hf=2, Wf=2,
strideh=2, stridew=2, pad=0, pad=0)
doutc2 = relu::backward(doutr2, outc2)
[doutp1, dW2, db2] = conv2d::backward(doutc2, Houtc2, Woutc2, outp1, W2, b2, F1,
Houtp1, Woutp1, Hf, Wf, stride, stride, pad, pad)
## layer 1: conv1 -> relu1 -> pool1
doutr1 = max_pool2d::backward(doutp1, Houtp1, Woutp1, outr1, F1, Houtc1, Woutc1, Hf=2, Wf=2,
strideh=2, stridew=2, pad=0, pad=0)
doutc1 = relu::backward(doutr1, outc1)
[dX_batch, dW1, db1] = conv2d::backward(doutc1, Houtc1, Woutc1, X_batch, W1, b1, C,
Hin, Win, Hf, Wf, stride, stride, pad, pad)
# Compute regularization backward pass
dW1_reg = l2_reg::backward(W1, lambda)
dW2_reg = l2_reg::backward(W2, lambda)
dW3_reg = l2_reg::backward(W3, lambda)
dW4_reg = l2_reg::backward(W4, lambda)
dW1 = dW1 + dW1_reg
dW2 = dW2 + dW2_reg
dW3 = dW3 + dW3_reg
dW4 = dW4 + dW4_reg
# Flatten and store gradients for this parallel execution
# Note: We multiply by a weighting to allow for proper gradient averaging during the
# aggregation even with uneven batch sizes.
weighting = nrow(X_batch) / nrow(X_group_batch)
dW1_agg[j,] = matrix(dW1, rows=1, cols=nrow(W1)*ncol(W1)) * weighting
dW2_agg[j,] = matrix(dW2, rows=1, cols=nrow(W2)*ncol(W2)) * weighting
dW3_agg[j,] = matrix(dW3, rows=1, cols=nrow(W3)*ncol(W3)) * weighting
dW4_agg[j,] = matrix(dW4, rows=1, cols=nrow(W4)*ncol(W4)) * weighting
db1_agg[j,] = matrix(db1, rows=1, cols=nrow(b1)*ncol(b1)) * weighting
db2_agg[j,] = matrix(db2, rows=1, cols=nrow(b2)*ncol(b2)) * weighting
db3_agg[j,] = matrix(db3, rows=1, cols=nrow(b3)*ncol(b3)) * weighting
db4_agg[j,] = matrix(db4, rows=1, cols=nrow(b4)*ncol(b4)) * weighting
}
# Aggregate gradients
# Note: The gradients are already pre-multiplied by a weight so that addition here
# results in gradient averaging even with different possible mini-batch sizes. I.e.,
# the final mini-batch at the end of the dataset could be smaller than the other mini-batches.
dW1 = matrix(colSums(dW1_agg), rows=nrow(W1), cols=ncol(W1))
dW2 = matrix(colSums(dW2_agg), rows=nrow(W2), cols=ncol(W2))
dW3 = matrix(colSums(dW3_agg), rows=nrow(W3), cols=ncol(W3))
dW4 = matrix(colSums(dW4_agg), rows=nrow(W4), cols=ncol(W4))
db1 = matrix(colSums(db1_agg), rows=nrow(b1), cols=ncol(b1))
db2 = matrix(colSums(db2_agg), rows=nrow(b2), cols=ncol(b2))
db3 = matrix(colSums(db3_agg), rows=nrow(b3), cols=ncol(b3))
db4 = matrix(colSums(db4_agg), rows=nrow(b4), cols=ncol(b4))
# Optimize with SGD w/ Nesterov momentum
[W1, vW1] = sgd_nesterov::update(W1, dW1, lr, mu, vW1)
[W2, vW2] = sgd_nesterov::update(W2, dW2, lr, mu, vW2)
[W3, vW3] = sgd_nesterov::update(W3, dW3, lr, mu, vW3)
[W4, vW4] = sgd_nesterov::update(W4, dW4, lr, mu, vW4)
[b1, vb1] = sgd_nesterov::update(b1, db1, lr, mu, vb1)
[b2, vb2] = sgd_nesterov::update(b2, db2, lr, mu, vb2)
[b3, vb3] = sgd_nesterov::update(b3, db3, lr, mu, vb3)
[b4, vb4] = sgd_nesterov::update(b4, db4, lr, mu, vb4)
# Compute loss & accuracy for training & validation data every 100 iterations.
if (g %% 10 == 0) {
# Get a mini-batch in this group
beg = ((j-1) * batch_size) %% nrow(X_group_batch) + 1
end = min(nrow(X_group_batch), beg + batch_size - 1)
X_batch = X_group_batch[beg:end,]
y_batch = y_group_batch[beg:end,]
# Compute training loss & accuracy using final
probs = predict(X_batch, C, Hin, Win, W1, b1, W2, b2, W3, b3, W4, b4)
loss_data = cross_entropy_loss::forward(probs, y_batch)
loss_reg_W1 = l2_reg::forward(W1, lambda)
loss_reg_W2 = l2_reg::forward(W2, lambda)
loss_reg_W3 = l2_reg::forward(W3, lambda)
loss_reg_W4 = l2_reg::forward(W4, lambda)
loss = loss_data + loss_reg_W1 + loss_reg_W2 + loss_reg_W3 + loss_reg_W4
accuracy = mean(rowIndexMax(probs) == rowIndexMax(y_batch))
# Compute validation loss & accuracy
probs_val = predict(X_val, C, Hin, Win, W1, b1, W2, b2, W3, b3, W4, b4)
loss_val = cross_entropy_loss::forward(probs_val, Y_val)
accuracy_val = mean(rowIndexMax(probs_val) == rowIndexMax(Y_val))
# Output results
print("Epoch: " + e + ", Group: " + g + ", Train Loss: " + loss + ", Train Accuracy: "
+ accuracy + ", Val Loss: " + loss_val + ", Val Accuracy: " + accuracy_val)
}
}
# Anneal momentum towards 0.999
#mu = mu + (0.999 - mu)/(1+epochs-e)
# Decay learning rate
lr = lr * decay
}
}
predict = function(matrix[double] X, int C, int Hin, int Win,
matrix[double] W1, matrix[double] b1,
matrix[double] W2, matrix[double] b2,
matrix[double] W3, matrix[double] b3,
matrix[double] W4, matrix[double] b4)
return (matrix[double] probs) {
/*
* Computes the class probability predictions of a convolutional
* net using the "LeNet" architecture.
*
* The input matrix, X, has N examples, each represented as a 3D
* volume unrolled into a single vector.
*
* Inputs:
* - X: Input data matrix, of shape (N, C*Hin*Win).
* - C: Number of input channels (dimensionality of input depth).
* - Hin: Input height.
* - Win: Input width.
* - W1: 1st layer weights (parameters) matrix, of shape (F1, C*Hf*Wf).
* - b1: 1st layer biases vector, of shape (F1, 1).
* - W2: 2nd layer weights (parameters) matrix, of shape (F2, F1*Hf*Wf).
* - b2: 2nd layer biases vector, of shape (F2, 1).
* - W3: 3rd layer weights (parameters) matrix, of shape (F2*(Hin/4)*(Win/4), N3).
* - b3: 3rd layer biases vector, of shape (1, N3).
* - W4: 4th layer weights (parameters) matrix, of shape (N3, K).
* - b4: 4th layer biases vector, of shape (1, K).
*
* Outputs:
* - probs: Class probabilities, of shape (N, K).
*/
N = nrow(X)
# Network:
# conv1 -> relu1 -> pool1 -> conv2 -> relu2 -> pool2 -> affine3 -> relu3 -> affine4 -> softmax
Hf = 5 # filter height
Wf = 5 # filter width
stride = 1
pad = 2 # For same dimensions, (Hf - stride) / 2
F1 = nrow(W1) # num conv filters in conv1
F2 = nrow(W2) # num conv filters in conv2
N3 = ncol(W3) # num nodes in affine3
K = ncol(W4) # num nodes in affine4, equal to number of target dimensions (num classes)
# Compute predictions over mini-batches
probs = matrix(0, rows=N, cols=K)
batch_size = 64
iters = ceil(N / batch_size)
parfor(i in 1:iters, check=0) { # complains about `probs` as an inter-loop dependency
# Get next batch
beg = ((i-1) * batch_size) %% N + 1
end = min(N, beg + batch_size - 1)
X_batch = X[beg:end,]
# Compute forward pass
## layer 1: conv1 -> relu1 -> pool1
[outc1, Houtc1, Woutc1] = conv2d::forward(X_batch, W1, b1, C, Hin, Win, Hf, Wf, stride, stride,
pad, pad)
outr1 = relu::forward(outc1)
[outp1, Houtp1, Woutp1] = max_pool2d::forward(outr1, F1, Houtc1, Woutc1, Hf=2, Wf=2,
strideh=2, stridew=2, pad=0, pad=0)
## layer 2: conv2 -> relu2 -> pool2
[outc2, Houtc2, Woutc2] = conv2d::forward(outp1, W2, b2, F1, Houtp1, Woutp1, Hf, Wf,
stride, stride, pad, pad)
outr2 = relu::forward(outc2)
[outp2, Houtp2, Woutp2] = max_pool2d::forward(outr2, F2, Houtc2, Woutc2, Hf=2, Wf=2,
strideh=2, stridew=2, pad=0, pad=0)
## layer 3: affine3 -> relu3
outa3 = affine::forward(outp2, W3, b3)
outr3 = relu::forward(outa3)
## layer 4: affine4 -> softmax
outa4 = affine::forward(outr3, W4, b4)
probs_batch = softmax::forward(outa4)
# Store predictions
probs[beg:end,] = probs_batch
}
}
eval = function(matrix[double] probs, matrix[double] Y)
return (double loss, double accuracy) {
/*
* Evaluates a convolutional net using the "LeNet" architecture.
*
* The probs matrix contains the class probability predictions
* of K classes over N examples. The targets, Y, have K classes,
* and are one-hot encoded.
*
* Inputs:
* - probs: Class probabilities, of shape (N, K).
* - Y: Target matrix, of shape (N, K).
*
* Outputs:
* - loss: Scalar loss, of shape (1).
* - accuracy: Scalar accuracy, of shape (1).
*/
# Compute loss & accuracy
loss = cross_entropy_loss::forward(probs, Y)
correct_pred = rowIndexMax(probs) == rowIndexMax(Y)
accuracy = mean(correct_pred)
}
generate_dummy_data = function(int N, int C, int Hin, int Win, int K)
return (matrix[double] X, matrix[double] Y) {
/*
* Generate a dummy dataset.
*
* Outputs:
* - X: Input data matrix, of shape (N, D).
* - Y: Target matrix, of shape (N, K).
* - C: Number of input channels (dimensionality of input depth).
* - Hin: Input height.
* - Win: Input width.
*/
# Generate dummy input data
#N = 1024 # num examples
#C = 1 # num input channels
#Hin = 28 # input height
#Win = 28 # input width
#K = 10 # num target classes
X = rand(rows=N, cols=C*Hin*Win, pdf="normal")
classes = round(rand(rows=N, cols=1, min=1, max=K, pdf="uniform"))
Y = table(seq(1, N), classes, N, K) # one-hot encoding
}