blob: 90c26b91195733a15a3aacc179c8cf654f79e053 [file] [log] [blame]
#-------------------------------------------------------------
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
#-------------------------------------------------------------
# This script performs forward pass through ff neural network in ffTrain and ffPredict builtins
#
# INPUT PARAMETERS:
# --------------------------------------------------------------------------------------------
# NAME TYPE DEFAULT MEANING
# --------------------------------------------------------------------------------------------
# X Matrix[double] --- Training data
# layers List[unknown] --- List of layers and output layer activation function
# predict Boolean FALSE Flag used to avoid dropout when predicting
# --------------------------------------------------------------------------------------------
# OUTPUT:
# cache List[unknown] --- Caches all intermediate steps of forward pass
#
source("nn/layers/sigmoid.dml") as sigmoid
source("nn/layers/leaky_relu.dml") as lrelu
source("nn/layers/relu.dml") as relu
source("nn/layers/tanh.dml") as tanh
source("nn/layers/affine.dml") as affine
source("nn/layers/dropout.dml") as dropout
source("nn/layers/softmax.dml") as softmax
feedForward = function(Matrix[double] X, List[unknown] layers, Boolean predict = FALSE)
return(List[unknown] cache)
{
p = 0.35 # dropout probability
# layer 1
out1 = affine::forward(X, as.matrix(layers["W1"]), as.matrix(layers["b1"]))
outr1 = relu::forward(out1)
[outd1, maskd1] = dropout::forward(outr1, p, -1)
if(predict)
outd1 = outr1
# layer 2
out2 = affine::forward(outd1, as.matrix(layers["W2"]), as.matrix(layers["b2"]))
if (as.scalar(layers["activation"]) == "logits") {
cache = list(out1=out1, outr1=outr1, outd1=outd1, maskd1=maskd1, out2=out2)
} else {
outs2 = apply_activation(out2, as.scalar(layers["activation"]))
cache = list(out1=out1, outr1=outr1, outd1=outd1, maskd1=maskd1, out2=out2, outs2=outs2)
}
}
apply_activation = function(Matrix[double] input, String activation)
return (Matrix[double] out)
{
if(activation == "sigmoid") {
out = sigmoid::forward(input)
} else if (activation == "relu") {
out = relu::forward(input)
} else if (activation == "lrelu") {
out = lrelu::forward(input)
} else if (activation == "tanh") {
out = tanh::forward(input)
} else if (activation == "softmax") {
out = softmax::forward(input)
}
}