blob: f1beeebd382f04bf58f09e3eace106ad7e6054ae [file] [log] [blame]
#-------------------------------------------------------------
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
#-------------------------------------------------------------
source("scripts/nn/util.dml") as util
forward = function(matrix[double] input, matrix[double] filter, int pad, int stride,
int numInput, int numChannels, int inputWidth, int numFilters, int filterSize)
return (matrix[double] out)
{
/*
* Computes the forward pass for a 1D spatial convolutional layer
* by reshaping the input to fit conv2d.
*
* Inputs:
* - input: Inputs, of shape (N, C*W).
* - filter: Weights, of shape (F, C*W).
* - pad: Padding for left and right sides of input elements.
* - stride: Stride for moving filter.
* - numInput: Number of input elements N
* - numChannels: Number of input channels (dimensionality of input depth).
* - inputWidth: Input width.
* - numFilters: Number of filters F
* - filterSize: Filter width.
*
* Outputs:
* - out: Outputs, of shape (N, F*Wout).
*/
out = conv2d(input, filter, padding=[0,pad], stride=[1, stride],
input_shape=[numInput,numChannels,1,inputWidth], filter_shape=[numFilters,numChannels,1,filterSize])
}
backward_data = function(matrix[double] filter, matrix[double] dout, int pad, int stride,
int numInput, int numChannels, int inputWidth, int numFilters, int filterSize)
return (matrix[double] out)
{
/*
* Computes the backward pass regarding the input data for a 1D spatial convolutional layer
* by reshaping the input to fit conv2d backward data pass.
*
* Inputs:
* - filter: Weights, of shape (F, C*W).
* - dout: Output of the forward pass
* - pad: Padding for left and right sides of input elements.
* - stride: Stride for moving filter.
* - numInput: Number of input elements N
* - numChannels: Number of input channels (dimensionality of input depth).
* - inputWidth: Input width.
* - numFilters: Number of filters F
* - filterSize: Filter width.
*
* Outputs:
* - out: gradients based on the input data of the convolution.
*/
out = conv2d_backward_data(filter, dout, stride=[1,stride], padding=[0,pad],
input_shape=[numInput,numChannels,1,inputWidth], filter_shape=[numFilters,numChannels,1,filterSize])
}
backward_filter = function(matrix[double] input, matrix[double] dout, int pad, int stride,
int numInput, int numChannels, int inputWidth, int numFilters, int filterSize)
return (matrix[double] out)
{
/*
* Computes the backward pass regarding the filter for a 1D spatial convolutional layer
* by reshaping the input to fit conv2d backward data pass.
*
* Inputs:
* - input: Inputs, of shape (N, C*W).
* - dout: Output of the forward pass
* - pad: Padding for left and right sides of input elements.
* - stride: Stride for moving filter.
* - numInput: Number of input elements N
* - numChannels: Number of input channels (dimensionality of input depth).
* - inputWidth: Input width.
* - numFilters: Number of filters F
* - filterSize: Filter width.
*
* Outputs:
* - out: gradients bsaed on the filter of the convolution.
*/
out = conv2d_backward_filter(input, dout, stride=[1,stride], padding=[0,pad],
input_shape=[numInput,numChannels,1,inputWidth], filter_shape=[numFilters,numChannels,1,filterSize])
}