blob: 6170cd7b94f01c35a71a3529d8502b3dfa11134a [file] [log] [blame]
#-------------------------------------------------------------
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
#-------------------------------------------------------------
# XGBoost is a decision-tree-based ensemble Machine Learning algorithm that uses a gradient boosting. This xgboost
# implementation supports regression.
#
# INPUT:
# ---------------------------------------------------------------------------------------
# X Matrix of feature vectors we want to predict (X_test)
# M The model created at xgboost
# learning_rate The learning rate used in the model
# ---------------------------------------------------------------------------------------
#
# OUTPUT:
# -----------------------------------------------------------------------------
# P The predictions of the samples using the given xgboost model. (y_prediction)
# -----------------------------------------------------------------------------
m_xgboostPredictRegression = function(Matrix[Double] X, Matrix[Double] M, Double learning_rate = 0.3)
return (Matrix[Double] P)
{
nr_trees = max(M[2,])
P = matrix(0, rows=nrow(X), cols=1)
initial_prediction = M[6,1]
trees_M_offset = calculateTreesOffset(M)
parfor(entry in 1:nrow(X)) # go though each entry in X and calculate the new prediction
{
output_values = matrix(0, rows=1, cols=0)
for(i in 1:nr_trees) # go through all trees
{
begin_cur_tree = as.scalar(trees_M_offset[i,])
if(i == nr_trees)
end_cur_tree = ncol(M)
else
end_cur_tree = as.scalar(trees_M_offset[i+1,]) - 1
output_value = getOutputValueForEntryPredict(X[entry,], M[, begin_cur_tree:end_cur_tree])
output_values = cbind(output_values, as.matrix(output_value))
}
P[entry,] = initial_prediction + learning_rate * sum(output_values)
}
}
#-----------------------------------------------------------------------------------------------------------------------
# INPUT: row_vector: nx1 vector, one sample with n features
# INPUT: M: The current M matrix with the current tree
# OUTPUT: output_value: the prediction for the current sample at the current tree
getOutputValueForEntryPredict = function(Matrix[Double] row_vector, Matrix[Double] M)
return (Double output_value)
{
assert(nrow(row_vector) == 1)
current_node = M[,1]
assert(as.scalar(current_node[1,]) == 1)
cur_node_index = 1 # cant take the node id because its diff to the index
while(as.scalar(current_node[5,]) != 0.0) # until leaf
{
used_feature = as.scalar(current_node[4,])
feature_is_scalar = as.scalar(current_node[5,]) == 1
if(feature_is_scalar) #SCALAR values
{
if(as.scalar(row_vector[,used_feature]) < as.scalar(current_node[6,])) # go left
{
cur_node_index = (cur_node_index + as.scalar(current_node[3,]))
current_node = M[,cur_node_index]
}
else # go right
{
cur_node_index = cur_node_index + as.scalar(current_node[3,]) + 1
current_node = M[,cur_node_index]
}
}
else # CATEGORICAL values
{
assert(as.scalar(current_node[5,]) == 2)
if(as.scalar(row_vector[,used_feature]) == 1) # go left
{
cur_node_index = (cur_node_index + as.scalar(current_node[3,]))
current_node = M[,cur_node_index]
}
else # go right
{
assert(as.scalar(row_vector[,used_feature]) == 0)
cur_node_index = cur_node_index + as.scalar(current_node[3,]) + 1
current_node = M[,cur_node_index]
}
}
}
output_value = as.scalar(current_node[6,])
}
#-----------------------------------------------------------------------------------------------------------------------
# calculate the offset in M, where each new tree starts
# INPUT: M: The full M matrix calculated at xgboost model creation
# OUTPUT: offset_vector: nx1 vector indicates the start index of each tree in M
calculateTreesOffset = function(Matrix[Double] M) return (Matrix[Double] offset_vector)
{
nr_trees = max(M[2,])
last_tree_id = 1
curr_tree_id = 1
offset_vector = matrix(2,rows=1,cols=1) # start at second index, first index is initial prediction
i = 2
while(curr_tree_id < nr_trees) {
curr_tree_id = as.scalar(M[2,i])
if(curr_tree_id > last_tree_id) {
offset_vector = rbind(offset_vector, as.matrix(i))
last_tree_id = curr_tree_id
}
i = i + 1
}
}