| #------------------------------------------------------------- |
| # |
| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| # |
| #------------------------------------------------------------- |
| |
| # This function implements prediction and evaluation phase of Sherlock: |
| # Split feature matrix into four different feature categories and predicting the class probability |
| # on the respective features. Then combine all predictions for final predicted probabilities. |
| # A Deep Learning Approach to Semantic Data Type Detection. |
| # [Hulsebos, Madelon, et al. "Sherlock: A deep learning approach to semantic data type detection." |
| # Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. |
| # 2019.] |
| # |
| # INPUT: |
| # ------------------------------------------------------------------------------------------- |
| # X matrix of values which are to be classified |
| # cW weights (parameters) matrices for character distribtions |
| # cb biases vectors for character distribtions |
| # wW weights (parameters) matrices for word embeddings |
| # wb biases vectors for word embeddings |
| # pW weights (parameters) matrices for paragraph vectors |
| # pb biases vectors for paragraph vectors |
| # sW weights (parameters) matrices for global statistics |
| # sb biases vectors for global statistics |
| # fW weights (parameters) matrices for combining all trained features (final) |
| # fb biases vectors for combining all trained features (final) |
| # ------------------------------------------------------------------------------------------- |
| # |
| # OUTPUT: |
| # ------------------------------------------------------------------------------------------ |
| # probs class probabilities of shape (N, K) |
| # ------------------------------------------------------------------------------------------ |
| |
| source("scripts/nn/examples/sherlockNet.dml") as sherlockNet |
| |
| m_sherlockPredict = function(Matrix[Double] X, |
| Matrix[Double] cW1, Matrix[Double] cb1, |
| Matrix[Double] cW2, Matrix[Double] cb2, |
| Matrix[Double] cW3, Matrix[Double] cb3, |
| Matrix[Double] wW1, Matrix[Double] wb1, |
| Matrix[Double] wW2, Matrix[Double] wb2, |
| Matrix[Double] wW3, Matrix[Double] wb3, |
| Matrix[Double] pW1, Matrix[Double] pb1, |
| Matrix[Double] pW2, Matrix[Double] pb2, |
| Matrix[Double] pW3, Matrix[Double] pb3, |
| Matrix[Double] sW1, Matrix[Double] sb1, |
| Matrix[Double] sW2, Matrix[Double] sb2, |
| Matrix[Double] sW3, Matrix[Double] sb3, |
| Matrix[Double] fW1, Matrix[Double] fb1, |
| Matrix[Double] fW2, Matrix[Double] fb2, |
| Matrix[Double] fW3, Matrix[Double] fb3) |
| return (Matrix[Double] probs) { |
| |
| rows = nrow(X) |
| |
| cprobs = sherlockNet::predict(X[1:rows, 224:1183], cW1, cb1, cW2, cb2, cW3, cb3) |
| wprobs = sherlockNet::predict(cbind(X[1:rows, 13:212], X[1:rows, 1188]), wW1,wb1, wW2, wb2, wW3, wb3) |
| pprobs = sherlockNet::predict(X[1:rows, 1189:1588], pW1, pb1, pW2, pb2, pW3, pb3) |
| sprobs = sherlockNet::predict(cbind(X[1:rows, 1:12], X[1:rows, 213:223], X[1:rows, 1184:1187]), sW1, sb1, sW2, sb2, sW3, sb3) |
| |
| first_predictions = cbind(cprobs, wprobs, pprobs, sprobs) |
| #final training |
| probs = sherlockNet::predict(first_predictions, fW1, fb1, fW2, fb2, fW3, fb3) |
| } |
| |
| # Evaluates the performance of the network. |
| # --------------------------------------------------------------------------------------------- |
| # NAME TYPE DEFAULT MEANING |
| # --------------------------------------------------------------------------------------------- |
| # probs Matrix class probabilities of shape (N, K) (one-hot encoded) |
| # Y Matrix target matrix of shape (N, K) |
| # --------------------------------------------------------------------------------------------- |
| # loss double scalar loss, of shape (1) |
| # accuracy double scalar accuracy, of shape (1) |
| # f1 score double scalar f1 score, of shape (1) |
| # precision double scalar precission, of shape (1) |
| # recall double scalar recall, of shape (1) |
| |
| eval = function(Matrix[Double] probs, Matrix[Double] Y) |
| return (double loss, double accuracy, double f1, double precision, double recall) { |
| |
| [loss, accuracy, f1, precision, recall] = sherlockNet::eval(probs, Y) |
| } |