blob: 3eb475ba14a1f236abd7e4358d9d9815347c94bf [file] [log] [blame]
#-------------------------------------------------------------
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
#-------------------------------------------------------------
# function frequency conversion
#
# INPUT:
# -------------------------------------------------------------------------------------
# X dataset x
# mask mask of the columns for frequency conversion
# -------------------------------------------------------------------------------------
#
# OUTPUT:
# -----------------------------------------------------------------------------------------
# X categorical columns are replaced with their frequencies
# freqCount the frequency counts for the different categoricals
# -----------------------------------------------------------------------------------------
m_frequencyEncode = function(Matrix[Double] X, Matrix[Double] mask)
return (Matrix[Double] X, Matrix[Double] freqCount) {
tempX = replace(target=X, pattern=NaN, replacement=1)
freqCount = matrix(0, rows=ncol(tempX), cols = max(tempX))
if(sum(mask) > 0)
{
parfor(i in 1:ncol(mask))
{
if(as.scalar(mask[1, i]) == 1)
{
Y = tempX[, i]
valueCount = table(Y, 1)
freqCount[i, 1:nrow(valueCount)] = t(valueCount)/nrow(Y)
}
}
}
X = frequencyEncodeApply(X, freqCount)
}