blob: 5dfe746e7142b2e145a4b2804f44440e7a5e9af6 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.sysds.hops.cost;
import org.apache.sysds.common.Types.FileFormat;
import org.apache.sysds.lops.DataGen;
import org.apache.sysds.lops.LeftIndex;
import org.apache.sysds.lops.RightIndex;
import org.apache.sysds.lops.LopProperties.ExecType;
import org.apache.sysds.lops.MMTSJ.MMTSJType;
import org.apache.sysds.runtime.DMLRuntimeException;
import org.apache.sysds.runtime.controlprogram.caching.CacheableData;
import org.apache.sysds.runtime.controlprogram.caching.LazyWriteBuffer;
import org.apache.sysds.runtime.instructions.CPInstructionParser;
import org.apache.sysds.runtime.instructions.Instruction;
import org.apache.sysds.runtime.instructions.InstructionUtils;
import org.apache.sysds.runtime.instructions.cp.CPInstruction;
import org.apache.sysds.runtime.instructions.cp.FunctionCallCPInstruction;
import org.apache.sysds.runtime.instructions.cp.VariableCPInstruction;
import org.apache.sysds.runtime.instructions.cp.CPInstruction.CPType;
import org.apache.sysds.runtime.matrix.data.MatrixBlock;
public class CostEstimatorStaticRuntime extends CostEstimator
{
//time-conversion
private static final long DEFAULT_FLOPS = 2L * 1024 * 1024 * 1024; //2GFLOPS
//private static final long UNKNOWN_TIME = -1;
//floating point operations
private static final double DEFAULT_NFLOP_NOOP = 10;
private static final double DEFAULT_NFLOP_UNKNOWN = 1;
private static final double DEFAULT_NFLOP_CP = 1;
private static final double DEFAULT_NFLOP_TEXT_IO = 350;
//IO READ throughput
private static final double DEFAULT_MBS_FSREAD_BINARYBLOCK_DENSE = 200;
private static final double DEFAULT_MBS_FSREAD_BINARYBLOCK_SPARSE = 100;
private static final double DEFAULT_MBS_HDFSREAD_BINARYBLOCK_DENSE = 150;
public static final double DEFAULT_MBS_HDFSREAD_BINARYBLOCK_SPARSE = 75;
//IO WRITE throughput
private static final double DEFAULT_MBS_FSWRITE_BINARYBLOCK_DENSE = 150;
private static final double DEFAULT_MBS_FSWRITE_BINARYBLOCK_SPARSE = 75;
private static final double DEFAULT_MBS_HDFSWRITE_BINARYBLOCK_DENSE = 120;
private static final double DEFAULT_MBS_HDFSWRITE_BINARYBLOCK_SPARSE = 60;
private static final double DEFAULT_MBS_HDFSWRITE_TEXT_DENSE = 40;
private static final double DEFAULT_MBS_HDFSWRITE_TEXT_SPARSE = 30;
@Override
@SuppressWarnings("unused")
protected double getCPInstTimeEstimate( Instruction inst, VarStats[] vs, String[] args )
{
CPInstruction cpinst = (CPInstruction)inst;
//load time into mem
double ltime = 0;
if( !vs[0]._inmem ){
ltime += getHDFSReadTime( vs[0].getRows(), vs[0].getCols(), vs[0].getSparsity() );
//eviction costs
if( CacheableData.CACHING_WRITE_CACHE_ON_READ &&
LazyWriteBuffer.getWriteBufferLimit()<MatrixBlock.estimateSizeOnDisk(vs[0].getRows(), vs[0].getCols(),
(vs[0]._dc.getNonZeros()<0)? vs[0].getRows()*vs[0].getCols():vs[0]._dc.getNonZeros()) )
{
ltime += Math.abs( getFSWriteTime( vs[0].getRows(), vs[0].getCols(), vs[0].getSparsity() ));
}
vs[0]._inmem = true;
}
if( !vs[1]._inmem ){
ltime += getHDFSReadTime( vs[1].getRows(), vs[1].getCols(), vs[1].getSparsity() );
//eviction costs
if( CacheableData.CACHING_WRITE_CACHE_ON_READ &&
LazyWriteBuffer.getWriteBufferLimit()<MatrixBlock.estimateSizeOnDisk(vs[1].getRows(), vs[1].getCols(), (vs[1]._dc.getNonZeros()<0)? vs[1].getRows()*vs[1].getCols():vs[1]._dc.getNonZeros()) )
{
ltime += Math.abs( getFSWriteTime( vs[1].getRows(), vs[1].getCols(), vs[1].getSparsity()) );
}
vs[1]._inmem = true;
}
if( LOG.isDebugEnabled() && ltime!=0 ) {
LOG.debug("Cost["+cpinst.getOpcode()+" - read] = "+ltime);
}
//exec time CP instruction
String opcode = (cpinst instanceof FunctionCallCPInstruction) ? InstructionUtils.getOpCode(cpinst.toString()) : cpinst.getOpcode();
double etime = getInstTimeEstimate(opcode, vs, args, ExecType.CP);
//write time caching
double wtime = 0;
//double wtime = getFSWriteTime( vs[2]._rlen, vs[2]._clen, (vs[2]._nnz<0)? 1.0:(double)vs[2]._nnz/vs[2]._rlen/vs[2]._clen );
if( inst instanceof VariableCPInstruction && ((VariableCPInstruction)inst).getOpcode().equals("write") )
wtime += getHDFSWriteTime(vs[2].getRows(), vs[2].getCols(), vs[2].getSparsity(), ((VariableCPInstruction)inst).getInput3().getName() );
if( LOG.isDebugEnabled() && wtime!=0 ) {
LOG.debug("Cost["+cpinst.getOpcode()+" - write] = "+wtime);
}
//total costs
double costs = ltime + etime + wtime;
//if( LOG.isDebugEnabled() )
// LOG.debug("Costs CP instruction = "+costs);
return costs;
}
/////////////////////
// I/O Costs //
/////////////////////
/**
* Returns the estimated read time from HDFS.
* NOTE: Does not handle unknowns.
*
* @param dm rows?
* @param dn columns?
* @param ds sparsity factor?
* @return estimated HDFS read time
*/
private static double getHDFSReadTime( long dm, long dn, double ds )
{
boolean sparse = MatrixBlock.evalSparseFormatOnDisk(dm, dn, (long)(ds*dm*dn));
double ret = ((double)MatrixBlock.estimateSizeOnDisk(dm, dn, (long)(ds*dm*dn))) / (1024*1024);
if( sparse )
ret /= DEFAULT_MBS_HDFSREAD_BINARYBLOCK_SPARSE;
else //dense
ret /= DEFAULT_MBS_HDFSREAD_BINARYBLOCK_DENSE;
return ret;
}
private static double getHDFSWriteTime( long dm, long dn, double ds )
{
boolean sparse = MatrixBlock.evalSparseFormatOnDisk(dm, dn, (long)(ds*dm*dn));
double bytes = MatrixBlock.estimateSizeOnDisk(dm, dn, (long)(ds*dm*dn));
double mbytes = bytes / (1024*1024);
double ret = -1;
if( sparse )
ret = mbytes / DEFAULT_MBS_HDFSWRITE_BINARYBLOCK_SPARSE;
else //dense
ret = mbytes / DEFAULT_MBS_HDFSWRITE_BINARYBLOCK_DENSE;
//if( LOG.isDebugEnabled() )
// LOG.debug("Costs[export] = "+ret+"s, "+mbytes+" MB ("+dm+","+dn+","+ds+").");
return ret;
}
private static double getHDFSWriteTime( long dm, long dn, double ds, String format )
{
boolean sparse = MatrixBlock.evalSparseFormatOnDisk(dm, dn, (long)(ds*dm*dn));
double bytes = MatrixBlock.estimateSizeOnDisk(dm, dn, (long)(ds*dm*dn));
double mbytes = bytes / (1024*1024);
double ret = -1;
FileFormat fmt = FileFormat.safeValueOf(format);
if( fmt.isTextFormat() ) {
if( sparse )
ret = mbytes / DEFAULT_MBS_HDFSWRITE_TEXT_SPARSE;
else //dense
ret = mbytes / DEFAULT_MBS_HDFSWRITE_TEXT_DENSE;
ret *= 2.75; //text commonly 2x-3.5x larger than binary
}
else {
if( sparse )
ret = mbytes / DEFAULT_MBS_HDFSWRITE_BINARYBLOCK_SPARSE;
else //dense
ret = mbytes / DEFAULT_MBS_HDFSWRITE_BINARYBLOCK_DENSE;
}
//if( LOG.isDebugEnabled() )
// LOG.debug("Costs[export] = "+ret+"s, "+mbytes+" MB ("+dm+","+dn+","+ds+").");
return ret;
}
/**
* Returns the estimated read time from local FS.
* NOTE: Does not handle unknowns.
*
* @param dm rows?
* @param dn columns?
* @param ds sparsity factor?
* @return estimated local file system read time
*/
public static double getFSReadTime( long dm, long dn, double ds )
{
boolean sparse = MatrixBlock.evalSparseFormatOnDisk(dm, dn, (long)(ds*dm*dn));
double ret = ((double)MatrixBlock.estimateSizeOnDisk(dm, dn, (long)(ds*dm*dn))) / (1024*1024);
if( sparse )
ret /= DEFAULT_MBS_FSREAD_BINARYBLOCK_SPARSE;
else //dense
ret /= DEFAULT_MBS_FSREAD_BINARYBLOCK_DENSE;
return ret;
}
public static double getFSWriteTime( long dm, long dn, double ds )
{
boolean sparse = MatrixBlock.evalSparseFormatOnDisk(dm, dn, (long)(ds*dm*dn));
double ret = ((double)MatrixBlock.estimateSizeOnDisk(dm, dn, (long)(ds*dm*dn))) / (1024*1024);
if( sparse )
ret /= DEFAULT_MBS_FSWRITE_BINARYBLOCK_SPARSE;
else //dense
ret /= DEFAULT_MBS_FSWRITE_BINARYBLOCK_DENSE;
return ret;
}
/////////////////////
// Operation Costs //
/////////////////////
private static double getInstTimeEstimate(String opcode, VarStats[] vs, String[] args, ExecType et) {
return getInstTimeEstimate(opcode, false,
vs[0].getRows(), vs[0].getCols(), !vs[0]._dc.nnzKnown() ? 1.0 : vs[0].getSparsity(),
vs[1].getRows(), vs[1].getCols(), !vs[1]._dc.nnzKnown() ? 1.0 : vs[1].getSparsity(),
vs[2].getRows(), vs[2].getCols(), !vs[2]._dc.nnzKnown() ? 1.0 : vs[2].getSparsity(),
args);
}
/**
* Returns the estimated instruction execution time, w/o data transfer and single-threaded.
* For scalars input dims must be set to 1 before invocation.
*
* NOTE: Does not handle unknowns.
*
* @param opcode instruction opcode
* @param inMR ?
* @param d1m ?
* @param d1n ?
* @param d1s ?
* @param d2m ?
* @param d2n ?
* @param d2s ?
* @param d3m ?
* @param d3n ?
* @param d3s ?
* @param args ?
* @return estimated instruction execution time
*/
private static double getInstTimeEstimate( String opcode, boolean inMR, long d1m, long d1n, double d1s, long d2m, long d2n, double d2s, long d3m, long d3n, double d3s, String[] args )
{
double nflops = getNFLOP(opcode, inMR, d1m, d1n, d1s, d2m, d2n, d2s, d3m, d3n, d3s, args);
double time = nflops / DEFAULT_FLOPS;
if( LOG.isDebugEnabled() )
LOG.debug("Cost["+opcode+"] = "+time+"s, "+nflops+" flops ("+d1m+","+d1n+","+d1s+","+d2m+","+d2n+","+d2s+","+d3m+","+d3n+","+d3s+").");
return time;
}
private static double getNFLOP( String optype, boolean inMR, long d1m, long d1n, double d1s, long d2m, long d2n, double d2s, long d3m, long d3n, double d3s, String[] args )
{
//operation costs in FLOP on matrix block level (for CP and MR instructions)
//(excludes IO and parallelism; assumes known dims for all inputs, outputs )
boolean leftSparse = MatrixBlock.evalSparseFormatInMemory(d1m, d1n, (long)(d1s*d1m*d1n));
boolean rightSparse = MatrixBlock.evalSparseFormatInMemory(d2m, d2n, (long)(d2s*d2m*d2n));
boolean onlyLeft = (d1m>=0 && d1n>=0 && d2m<0 && d2n<0 );
boolean allExists = (d1m>=0 && d1n>=0 && d2m>=0 && d2n>=0 && d3m>=0 && d3n>=0 );
//NOTE: all instruction types that are equivalent in CP and MR are only
//included in CP to prevent redundancy
CPType cptype = CPInstructionParser.String2CPInstructionType.get(optype);
if( cptype != null ) //for CP Ops and equivalent MR ops
{
//general approach: count of floating point *, /, +, -, ^, builtin ;
switch(cptype)
{
case AggregateBinary: //opcodes: ba+*, cov
if( optype.equals("ba+*") ) { //matrix mult
//reduction by factor 2 because matrix mult better than
//average flop count
if( !leftSparse && !rightSparse )
return 2 * (d1m * d1n * ((d2n>1)?d1s:1.0) * d2n) /2;
else if( !leftSparse && rightSparse )
return 2 * (d1m * d1n * d1s * d2n * d2s) /2;
else if( leftSparse && !rightSparse )
return 2 * (d1m * d1n * d1s * d2n) /2;
else //leftSparse && rightSparse
return 2 * (d1m * d1n * d1s * d2n * d2s) /2;
}
else if( optype.equals("cov") ) {
//note: output always scalar, d3 used as weights block
//if( allExists ), same runtime for 2 and 3 inputs
return 23 * d1m; //(11+3*k+)
}
return 0;
case MMChain:
//reduction by factor 2 because matrix mult better than average flop count
//(mmchain essentially two matrix-vector muliplications)
if( !leftSparse )
return (2+2) * (d1m * d1n) /2;
else
return (2+2) * (d1m * d1n * d1s) /2;
case AggregateTernary: //opcodes: tak+*
return 6 * d1m * d1n; //2*1(*) + 4 (k+)
case AggregateUnary: //opcodes: uak+, uark+, uack+, uasqk+, uarsqk+, uacsqk+,
// uamean, uarmean, uacmean, uavar, uarvar, uacvar,
// uamax, uarmax, uarimax, uacmax, uamin, uarmin, uacmin,
// ua+, uar+, uac+, ua*, uatrace, uaktrace,
// nrow, ncol, length, cm
if( optype.equals("nrow") || optype.equals("ncol") || optype.equals("length") )
return DEFAULT_NFLOP_NOOP;
else if( optype.equals( "cm" ) ) {
double xcm = 1;
switch( Integer.parseInt(args[0]) ) {
case 0: xcm=1; break; //count
case 1: xcm=8; break; //mean
case 2: xcm=16; break; //cm2
case 3: xcm=31; break; //cm3
case 4: xcm=51; break; //cm4
case 5: xcm=16; break; //variance
}
return (leftSparse) ? xcm * (d1m * d1s + 1) : xcm * d1m;
}
else if( optype.equals("uatrace") || optype.equals("uaktrace") )
return 2 * d1m * d1n;
else if( optype.equals("ua+") || optype.equals("uar+") || optype.equals("uac+") ){
//sparse safe operations
if( !leftSparse ) //dense
return d1m * d1n;
else //sparse
return d1m * d1n * d1s;
}
else if( optype.equals("uak+") || optype.equals("uark+") || optype.equals("uack+"))
return 4 * d1m * d1n; //1*k+
else if( optype.equals("uasqk+") || optype.equals("uarsqk+") || optype.equals("uacsqk+"))
return 5 * d1m * d1n; // +1 for multiplication to square term
else if( optype.equals("uamean") || optype.equals("uarmean") || optype.equals("uacmean"))
return 7 * d1m * d1n; //1*k+
else if( optype.equals("uavar") || optype.equals("uarvar") || optype.equals("uacvar"))
return 14 * d1m * d1n;
else if( optype.equals("uamax") || optype.equals("uarmax") || optype.equals("uacmax")
|| optype.equals("uamin") || optype.equals("uarmin") || optype.equals("uacmin")
|| optype.equals("uarimax") || optype.equals("ua*") )
return d1m * d1n;
return 0;
case Binary: //opcodes: +, -, *, /, ^ (incl. ^2, *2),
//max, min, solve, ==, !=, <, >, <=, >=
//note: all relational ops are not sparsesafe
//note: covers scalar-scalar, scalar-matrix, matrix-matrix
if( optype.equals("+") || optype.equals("-") //sparse safe
&& ( leftSparse || rightSparse ) )
return d1m*d1n*d1s + d2m*d2n*d2s;
else if( optype.equals("solve") ) //see also MultiReturnBuiltin
return d1m * d1n * d1n; //for 1kx1k ~ 1GFLOP -> 0.5s
else
return d3m*d3n;
case Ternary: //opcodes: +*, -*, ifelse
return 2 * d1m * d1n;
case Ctable: //opcodes: ctable
if( optype.equals("ctable") ){
if( leftSparse )
return d1m * d1n * d1s; //add
else
return d1m * d1n;
}
return 0;
case Builtin: //opcodes: log
//note: covers scalar-scalar, scalar-matrix, matrix-matrix
//note: can be unary or binary
if( allExists ) //binary
return 3 * d3m * d3n;
else //unary
return d3m * d3n;
case Unary: //opcodes: exp, abs, sin, cos, tan, sign, sqrt, plogp, print, round, sprop, sigmoid
//TODO add cost functions for commons math builtins: inverse, cholesky
if( optype.equals("print") ) //scalar only
return 1;
else
{
double xbu = 1; //default for all ops
if( optype.equals("plogp") ) xbu = 2;
else if( optype.equals("round") ) xbu = 4;
if( optype.equals("sin") || optype.equals("tan") || optype.equals("round")
|| optype.equals("abs") || optype.equals("sqrt") || optype.equals("sprop")
|| optype.equals("sigmoid") || optype.equals("sign") ) //sparse-safe
{
if( leftSparse ) //sparse
return xbu * d1m * d1n * d1s;
else //dense
return xbu * d1m * d1n;
}
else
return xbu * d1m * d1n;
}
case Reorg: //opcodes: r', rdiag
case Reshape: //opcodes: rshape
if( leftSparse )
return d1m * d1n * d1s;
else
return d1m * d1n;
case Append: //opcodes: append
return DEFAULT_NFLOP_CP *
(((leftSparse) ? d1m * d1n * d1s : d1m * d1n ) +
((rightSparse) ? d2m * d2n * d2s : d2m * d2n ));
case Variable: //opcodes: assignvar, cpvar, rmvar, rmfilevar, assignvarwithfile, attachfiletovar, valuepick, iqsize, read, write, createvar, setfilename, castAsMatrix
if( optype.equals("write") ){
FileFormat fmt = FileFormat.safeValueOf(args[0]);
boolean text = fmt.isTextFormat();
double xwrite = text ? DEFAULT_NFLOP_TEXT_IO : DEFAULT_NFLOP_CP;
if( !leftSparse )
return d1m * d1n * xwrite;
else
return d1m * d1n * d1s * xwrite;
}
else if ( optype.equals("inmem-iqm") )
//note: assumes uniform distribution
return 2 * d1m + //sum of weights
5 + 0.25d * d1m + //scan to lower quantile
8 * 0.5 * d1m; //scan from lower to upper quantile
else
return DEFAULT_NFLOP_NOOP;
case Rand: //opcodes: rand, seq
if( optype.equals(DataGen.RAND_OPCODE) ){
int nflopRand = 32; //per random number
switch(Integer.parseInt(args[0])) {
case 0: return DEFAULT_NFLOP_NOOP; //empty matrix
case 1: return d3m * d3n * 8; //allocate, arrayfill
case 2: //full rand
{
if( d3s==1.0 )
return d3m * d3n * nflopRand + d3m * d3n * 8; //DENSE gen (incl allocate)
else
return (d3s>=MatrixBlock.SPARSITY_TURN_POINT)?
2 * d3m * d3n * nflopRand + d3m * d3n * 8: //DENSE gen (incl allocate)
3 * d3m * d3n * d3s * nflopRand + d3m * d3n * d3s * 24; //SPARSE gen (incl allocate)
}
}
}
else //seq
return d3m * d3n * DEFAULT_NFLOP_CP;
case StringInit: //sinit
return d3m * d3n * DEFAULT_NFLOP_CP;
case FCall: //opcodes: fcall
//note: should be invoked independently for multiple outputs
return d1m * d1n * d1s * DEFAULT_NFLOP_UNKNOWN;
case MultiReturnBuiltin: //opcodes: qr, lu, eigen, svd
//note: they all have cubic complexity, the scaling factor refers to commons.math
double xf = 2; //default e.g, qr
if( optype.equals("eigen") )
xf = 32;
else if ( optype.equals("lu") )
xf = 16;
else if ( optype.equals("svd"))
xf = 32; // TODO - assuming worst case for now
return xf * d1m * d1n * d1n; //for 1kx1k ~ 2GFLOP -> 1s
case ParameterizedBuiltin: //opcodes: cdf, invcdf, groupedagg, rmempty
if( optype.equals("cdf") || optype.equals("invcdf"))
return DEFAULT_NFLOP_UNKNOWN; //scalar call to commons.math
else if( optype.equals("groupedagg") ){
double xga = 1;
switch( Integer.parseInt(args[0]) ) {
case 0: xga=4; break; //sum, see uk+
case 1: xga=1; break; //count, see cm
case 2: xga=8; break; //mean
case 3: xga=16; break; //cm2
case 4: xga=31; break; //cm3
case 5: xga=51; break; //cm4
case 6: xga=16; break; //variance
}
return 2 * d1m + xga * d1m; //scan for min/max, groupedagg
}
else if( optype.equals("rmempty") ){
switch(Integer.parseInt(args[0])){
case 0: //remove rows
return ((leftSparse) ? d1m : d1m * Math.ceil(1.0d/d1s)/2) +
DEFAULT_NFLOP_CP * d3m * d2m;
case 1: //remove cols
return d1n * Math.ceil(1.0d/d1s)/2 +
DEFAULT_NFLOP_CP * d3m * d2m;
}
}
return 0;
case QSort: //opcodes: sort
if( optype.equals("sort") ){
//note: mergesort since comparator used
double sortCosts = 0;
if( onlyLeft )
sortCosts = DEFAULT_NFLOP_CP * d1m + d1m;
else //w/ weights
sortCosts = DEFAULT_NFLOP_CP * ((leftSparse)?d1m*d1s:d1m);
return sortCosts + d1m*(int)(Math.log(d1m)/Math.log(2)) + //mergesort
DEFAULT_NFLOP_CP * d1m;
}
return 0;
case MatrixIndexing: //opcodes: rightIndex, leftIndex
if( optype.equals(LeftIndex.OPCODE) ){
return DEFAULT_NFLOP_CP * ((leftSparse)? d1m*d1n*d1s : d1m*d1n)
+ 2 * DEFAULT_NFLOP_CP * ((rightSparse)? d2m*d2n*d2s : d2m*d2n );
}
else if( optype.equals(RightIndex.OPCODE) ){
return DEFAULT_NFLOP_CP * ((leftSparse)? d2m*d2n*d2s : d2m*d2n );
}
return 0;
case MMTSJ: //opcodes: tsmm
//diff to ba+* only upper triangular matrix
//reduction by factor 2 because matrix mult better than
//average flop count
if( MMTSJType.valueOf(args[0]).isLeft() ) { //lefttranspose
if( !rightSparse ) //dense
return d1m * d1n * d1s * d1n /2;
else //sparse
return d1m * d1n * d1s * d1n * d1s /2;
}
else if(onlyLeft) { //righttranspose
if( !leftSparse ) //dense
return (double)d1m * d1n * d1m /2;
else //sparse
return d1m * d1n * d1s //reorg sparse
+ d1m * d1n * d1s * d1n * d1s /2; //core tsmm
}
return 0;
case Partition:
return d1m * d1n * d1s + //partitioning costs
(inMR ? 0 : //include write cost if in CP
getHDFSWriteTime(d1m, d1n, d1s)* DEFAULT_FLOPS);
default:
throw new DMLRuntimeException("CostEstimator: unsupported instruction type: "+optype);
}
}
else
{
throw new DMLRuntimeException("CostEstimator: unsupported instruction type: "+optype);
}
}
}