blob: 41ae7ed7a624684551bd10bcd976112d7c97ae03 [file] [log] [blame]
#-------------------------------------------------------------
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
#-------------------------------------------------------------
args <- commandArgs(TRUE)
library("Matrix")
imgSize=as.integer(args[1])
numImg=as.integer(args[2])
numChannels=as.integer(args[3])
numFilters=as.integer(args[4])
filterSize=as.integer(args[5])
stride=as.integer(args[6])
pad=as.integer(args[7])
# Assumption: NCHW image format
x=matrix(seq(1, numImg*numChannels*imgSize*imgSize), numImg, numChannels*imgSize*imgSize, byrow=TRUE)
w=matrix(seq(1, numFilters*numChannels*filterSize*filterSize), numFilters, numChannels*filterSize*filterSize, byrow=TRUE)
if(as.logical(args[9])) {
zero_mask = (x - mean(x)*1.5) > 0
x = x * zero_mask
} else {
x = x - mean(x)
}
if(as.logical(args[10])) {
zero_mask = (w - mean(w)*1.5) > 0
w = w * zero_mask
} else {
w = w - mean(w)
}
pad_image <- function(img, Hin, Win, padh, padw){
C = nrow(img)
img_padded = matrix(0, C, (Hin+2*padh)*(Win+2*padw), byrow=TRUE) # zeros
for (c in 1:C) {
img_slice = matrix(img[c,], Hin, Win, byrow=TRUE) # depth slice C reshaped
img_padded_slice = matrix(0, Hin+2*padh, Win+2*padw)
img_padded_slice[(padh+1):(padh+Hin), (padw+1):(padw+Win)] = img_slice
img_padded[c,] = matrix(t(img_padded_slice), 1, (Hin+2*padh)*(Win+2*padw)) # reshape
}
img_padded
}
im2col <- function(img, Hin, Win, Hf, Wf, strideh, stridew) {
C = nrow(img)
Hout = as.integer((Hin - Hf) / strideh + 1)
Wout = as.integer((Win - Wf) / stridew + 1)
img_cols = matrix(0, C*Hf*Wf, Hout*Wout, byrow=TRUE) # zeros
for (hout in 1:Hout) { # all output rows
hin = (hout-1) * strideh + 1
for (wout in 1:Wout) { # all output columns
win = (wout-1) * stridew + 1
# Extract a local patch of the input image corresponding spatially to the filter sizes.
img_patch = matrix(0, C, Hf*Wf, byrow=TRUE) # zeros
for (c in 1:C) { # all channels
img_slice = matrix(img[c,], Hin, Win, byrow=TRUE) # reshape
img_patch[c,] = matrix(t(img_slice[hin:(hin+Hf-1), win:(win+Wf-1)]), 1, Hf*Wf)
}
img_cols[,(hout-1)*Wout + wout] = matrix(t(img_patch), C*Hf*Wf, 1) # reshape
}
}
img_cols
}
conv2d <- function(X, W, C, Hin, Win, Hf, Wf, strideh, stridew, padh, padw) {
N = nrow(X)
F = nrow(W)
Hout = as.integer((Hin + 2 * padh - Hf) / strideh + 1)
Wout = as.integer((Win + 2 * padw - Wf) / stridew + 1)
# Create output volume
out = matrix(0, N, F*Hout*Wout, byrow=TRUE)
# Convolution - im2col implementation
for (n in 1:N) { # all examples
Xn = matrix(X[n,], C, Hin*Win, byrow=TRUE) # reshape
# Pad image
Xn_padded = pad_image(Xn, Hin, Win, padh, padw) # shape (C, (Hin+2*padh)*(Win+2*padw))
# Extract local image patches into columns with im2col, of shape (C*Hf*Wf, Hout*Wout)
Xn_padded_cols = im2col(Xn_padded, Hin+2*padh, Win+2*padw, Hf, Wf, strideh, stridew)
# Convolve patches with filters
outn = W %*% Xn_padded_cols # shape (F, Hout*Wout)
out[n,] = matrix(t(outn), 1, F*Hout*Wout) # reshape
}
out
}
R = conv2d(x, w, numChannels, imgSize, imgSize, filterSize, filterSize, stride, stride, pad, pad);
Hout = as.integer((imgSize + 2 * pad - filterSize) / stride + 1)
Wout = Hout
b = matrix(seq(1, numFilters), numFilters, 1, byrow=TRUE)
for(k in 0:(numFilters-1)) {
start = k*Hout^2;
R[,(start+1):(start+Hout^2)] = R[,(start+1):(start+Hout^2)] + b[k+1,1]
}
writeMM(as(R,"CsparseMatrix"), paste(args[8], "B", sep=""))