blob: eeeba41546dd9e2b471f57c93a7fe6f4e3d63ad2 [file] [log] [blame]
#-------------------------------------------------------------
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
#-------------------------------------------------------------
# data preparation
FXY = read("./src/test/resources/datasets/Salaries.csv",
data_type="frame", format="csv", header=TRUE);
F = FXY[,1:ncol(FXY)-1];
y = as.matrix(FXY[,ncol(FXY)]);
jspec= "{ ids:true, recode:[1,2,3,6],bin:["
+"{id:4, method:equi-width, numbins:14},"
+"{id:5, method:equi-width, numbins:12}]}"
[X,M] = transformencode(target=F, spec=jspec);
X = X[,2:ncol(X)]
m = nrow(X)
n = ncol(X)
fdom = colMaxs(X);
foffb = t(cumsum(t(fdom))) - fdom;
foffe = t(cumsum(t(fdom)))
rix = matrix(seq(1,m)%*%matrix(1,1,n), m*n, 1)
cix = matrix(X + foffb, m*n, 1);
X2 = table(rix, cix); #one-hot encoded
# learn model
B = lm(X=X2, y=y, verbose=FALSE);
yhat = X2 %*% B;
e = (y-yhat)^2;
# call slice finding
[TS,TR,d] = slicefinder(X=X, e=e, k=10,
alpha=0.95, minSup=4, tpEval=TRUE, verbose=TRUE);
print("TS:\n" + toString(TS))
print("TR:\n" + toString(TR))
print("Debug matrix:\n" + toString(d))