blob: 6c416a2724e6be8020b94379d7526a097b1656c9 [file] [log] [blame]
#-------------------------------------------------------------
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
#-------------------------------------------------------------
# Principal Component Analysis (PCA) for reconstruction of approximation of the original data.
#
# This methods allows to reconstruct an approximation of the original matrix, and is usefull for
# calculating how much information is lost in the PCA.
#
# ---------------------------------------------------------------------------------------------
# NAME TYPE DEFAULT MEANING
# ---------------------------------------------------------------------------------------------
# X Matrix --- Input features that have PCA applied to them
# Centering Matrix empty matrix The column means of the PCA model, subtracted to construct the PCA
# ScaleFactor Matrix empty matrix The scaling of each dimension in the PCA model
# ---------------------------------------------------------------------------------------------
# Y Matrix --- Output feature matrix reconstructing and approximation of the original matrix
# ---------------------------------------------------------------------------------------------
m_pcaInverse = function(Matrix[Double] Y, Matrix[Double] Clusters,
Matrix[Double] Centering = matrix(0, rows= 0, cols=0),
Matrix[Double] ScaleFactor = matrix(0, rows= 0, cols=0))
return (Matrix[Double] X)
{
X = Y %*% t(Clusters)
if(nrow(ScaleFactor) > 0 & ncol(ScaleFactor) > 0){
X = X * ScaleFactor
}
if(nrow(Centering) > 0 & ncol(Centering) > 0){
X = X + Centering
}
}