| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| import faulthandler |
| import inspect |
| import os |
| import sys |
| from textwrap import dedent |
| from typing import Dict, List, IO, Tuple |
| |
| from pyspark.accumulators import _accumulatorRegistry |
| from pyspark.errors import PySparkRuntimeError, PySparkValueError |
| from pyspark.serializers import ( |
| read_bool, |
| read_int, |
| write_int, |
| write_with_length, |
| SpecialLengths, |
| ) |
| from pyspark.sql.functions import OrderingColumn, PartitioningColumn, SelectedColumn |
| from pyspark.sql.types import _parse_datatype_json_string, StructType |
| from pyspark.sql.udtf import AnalyzeArgument, AnalyzeResult |
| from pyspark.util import handle_worker_exception, local_connect_and_auth |
| from pyspark.worker_util import ( |
| check_python_version, |
| read_command, |
| pickleSer, |
| send_accumulator_updates, |
| setup_broadcasts, |
| setup_memory_limits, |
| setup_spark_files, |
| utf8_deserializer, |
| ) |
| |
| |
| def read_udtf(infile: IO) -> type: |
| """Reads the Python UDTF and checks if its valid or not.""" |
| # Receive Python UDTF |
| handler = read_command(pickleSer, infile) |
| if not isinstance(handler, type): |
| raise PySparkRuntimeError( |
| f"Invalid UDTF handler type. Expected a class (type 'type'), but " |
| f"got an instance of {type(handler).__name__}." |
| ) |
| |
| if not hasattr(handler, "analyze") or not isinstance( |
| inspect.getattr_static(handler, "analyze"), staticmethod |
| ): |
| raise PySparkRuntimeError( |
| "Failed to execute the user defined table function because it has not " |
| "implemented the 'analyze' static method or specified a fixed " |
| "return type during registration time. " |
| "Please add the 'analyze' static method or specify the return type, " |
| "and try the query again." |
| ) |
| return handler |
| |
| |
| def read_arguments(infile: IO) -> Tuple[List[AnalyzeArgument], Dict[str, AnalyzeArgument]]: |
| """Reads the arguments for `analyze` static method.""" |
| # Receive arguments |
| num_args = read_int(infile) |
| args: List[AnalyzeArgument] = [] |
| kwargs: Dict[str, AnalyzeArgument] = {} |
| for _ in range(num_args): |
| dt = _parse_datatype_json_string(utf8_deserializer.loads(infile)) |
| is_constant_expression = read_bool(infile) |
| if is_constant_expression: |
| value = pickleSer._read_with_length(infile) |
| if dt.needConversion(): |
| value = dt.fromInternal(value) |
| else: |
| value = None |
| is_table = read_bool(infile) |
| argument = AnalyzeArgument( |
| dataType=dt, value=value, isTable=is_table, isConstantExpression=is_constant_expression |
| ) |
| |
| is_named_arg = read_bool(infile) |
| if is_named_arg: |
| name = utf8_deserializer.loads(infile) |
| kwargs[name] = argument |
| else: |
| args.append(argument) |
| return args, kwargs |
| |
| |
| def main(infile: IO, outfile: IO) -> None: |
| """ |
| Runs the Python UDTF's `analyze` static method. |
| |
| This process will be invoked from `UserDefinedPythonTableFunctionAnalyzeRunner.runInPython` |
| in JVM and receive the Python UDTF and its arguments for the `analyze` static method, |
| and call the `analyze` static method, and send back a AnalyzeResult as a result of the method. |
| """ |
| faulthandler_log_path = os.environ.get("PYTHON_FAULTHANDLER_DIR", None) |
| tracebackDumpIntervalSeconds = os.environ.get("PYTHON_TRACEBACK_DUMP_INTERVAL_SECONDS", None) |
| try: |
| if faulthandler_log_path: |
| faulthandler_log_path = os.path.join(faulthandler_log_path, str(os.getpid())) |
| faulthandler_log_file = open(faulthandler_log_path, "w") |
| faulthandler.enable(file=faulthandler_log_file) |
| |
| check_python_version(infile) |
| |
| if tracebackDumpIntervalSeconds is not None and int(tracebackDumpIntervalSeconds) > 0: |
| faulthandler.dump_traceback_later(int(tracebackDumpIntervalSeconds), repeat=True) |
| |
| memory_limit_mb = int(os.environ.get("PYSPARK_PLANNER_MEMORY_MB", "-1")) |
| setup_memory_limits(memory_limit_mb) |
| |
| setup_spark_files(infile) |
| setup_broadcasts(infile) |
| |
| _accumulatorRegistry.clear() |
| |
| udtf_name = utf8_deserializer.loads(infile) |
| handler = read_udtf(infile) |
| args, kwargs = read_arguments(infile) |
| |
| error_prefix = f"Failed to evaluate the user-defined table function '{udtf_name}'" |
| |
| def format_error(msg: str) -> str: |
| return dedent(msg).replace("\n", " ") |
| |
| # Check that the arguments provided to the UDTF call match the expected parameters defined |
| # in the static 'analyze' method signature. |
| try: |
| inspect.signature(handler.analyze).bind(*args, **kwargs) # type: ignore[attr-defined] |
| except TypeError as e: |
| # The UDTF call's arguments did not match the expected signature. |
| raise PySparkValueError( |
| format_error( |
| f""" |
| {error_prefix} because the function arguments did not match the expected |
| signature of the static 'analyze' method ({e}). Please update the query so that |
| this table function call provides arguments matching the expected signature, or |
| else update the table function so that its static 'analyze' method accepts the |
| provided arguments, and then try the query again.""" |
| ) |
| ) |
| |
| # Invoke the UDTF's 'analyze' method. |
| result = handler.analyze(*args, **kwargs) # type: ignore[attr-defined] |
| |
| # Check invariants about the 'analyze' method after running it. |
| if not isinstance(result, AnalyzeResult): |
| raise PySparkValueError( |
| format_error( |
| f""" |
| {error_prefix} because the static 'analyze' method expects a result of type |
| pyspark.sql.udtf.AnalyzeResult, but instead this method returned a value of |
| type: {type(result)}""" |
| ) |
| ) |
| elif not isinstance(result.schema, StructType): |
| raise PySparkValueError( |
| format_error( |
| f""" |
| {error_prefix} because the static 'analyze' method expects a result of type |
| pyspark.sql.udtf.AnalyzeResult with a 'schema' field comprising a StructType, |
| but the 'schema' field had the wrong type: {type(result.schema)}""" |
| ) |
| ) |
| |
| def invalid_analyze_result_field(field_name: str, expected_field: str) -> PySparkValueError: |
| return PySparkValueError( |
| format_error( |
| f""" |
| {error_prefix} because the static 'analyze' method returned an |
| 'AnalyzeResult' object with the '{field_name}' field set to a value besides a |
| list or tuple of '{expected_field}' objects. Please update the table function |
| and then try the query again.""" |
| ) |
| ) |
| |
| has_table_arg = any(arg.isTable for arg in args) or any( |
| arg.isTable for arg in kwargs.values() |
| ) |
| if not has_table_arg and result.withSinglePartition: |
| raise PySparkValueError( |
| format_error( |
| f""" |
| {error_prefix} because the static 'analyze' method returned an |
| 'AnalyzeResult' object with the 'withSinglePartition' field set to 'true', but |
| the function call did not provide any table argument. Please update the query so |
| that it provides a table argument, or else update the table function so that its |
| 'analyze' method returns an 'AnalyzeResult' object with the |
| 'withSinglePartition' field set to 'false', and then try the query again.""" |
| ) |
| ) |
| elif not has_table_arg and len(result.partitionBy) > 0: |
| raise PySparkValueError( |
| format_error( |
| f""" |
| {error_prefix} because the static 'analyze' method returned an |
| 'AnalyzeResult' object with the 'partitionBy' list set to non-empty, but the |
| function call did not provide any table argument. Please update the query so |
| that it provides a table argument, or else update the table function so that its |
| 'analyze' method returns an 'AnalyzeResult' object with the 'partitionBy' list |
| set to empty, and then try the query again.""" |
| ) |
| ) |
| elif not isinstance(result.partitionBy, (list, tuple)) or not all( |
| isinstance(val, PartitioningColumn) for val in result.partitionBy |
| ): |
| raise invalid_analyze_result_field("partitionBy", "PartitioningColumn") |
| elif not isinstance(result.orderBy, (list, tuple)) or not all( |
| isinstance(val, OrderingColumn) for val in result.orderBy |
| ): |
| raise invalid_analyze_result_field("orderBy", "OrderingColumn") |
| elif not isinstance(result.select, (list, tuple)) or not all( |
| isinstance(val, SelectedColumn) for val in result.select |
| ): |
| raise invalid_analyze_result_field("select", "SelectedColumn") |
| |
| # Return the analyzed schema. |
| write_with_length(result.schema.json().encode("utf-8"), outfile) |
| # Return the pickled 'AnalyzeResult' class instance. |
| pickleSer._write_with_length(result, outfile) |
| # Return whether the "with single partition" property is requested. |
| write_int(1 if result.withSinglePartition else 0, outfile) |
| # Return the list of partitioning columns, if any. |
| write_int(len(result.partitionBy), outfile) |
| for partitioning_col in result.partitionBy: |
| write_with_length(partitioning_col.name.encode("utf-8"), outfile) |
| # Return the requested input table ordering, if any. |
| write_int(len(result.orderBy), outfile) |
| for ordering_col in result.orderBy: |
| write_with_length(ordering_col.name.encode("utf-8"), outfile) |
| write_int(1 if ordering_col.ascending else 0, outfile) |
| if ordering_col.overrideNullsFirst is None: |
| write_int(0, outfile) |
| elif ordering_col.overrideNullsFirst: |
| write_int(1, outfile) |
| else: |
| write_int(2, outfile) |
| # Return the requested selected input table columns, if specified. |
| write_int(len(result.select), outfile) |
| for col in result.select: |
| write_with_length(col.name.encode("utf-8"), outfile) |
| write_with_length(col.alias.encode("utf-8"), outfile) |
| |
| except BaseException as e: |
| handle_worker_exception(e, outfile) |
| sys.exit(-1) |
| finally: |
| if faulthandler_log_path: |
| faulthandler.disable() |
| faulthandler_log_file.close() |
| os.remove(faulthandler_log_path) |
| |
| send_accumulator_updates(outfile) |
| |
| # check end of stream |
| if read_int(infile) == SpecialLengths.END_OF_STREAM: |
| write_int(SpecialLengths.END_OF_STREAM, outfile) |
| else: |
| # write a different value to tell JVM to not reuse this worker |
| write_int(SpecialLengths.END_OF_DATA_SECTION, outfile) |
| sys.exit(-1) |
| |
| # Force to cancel dump_traceback_later |
| faulthandler.cancel_dump_traceback_later() |
| |
| |
| if __name__ == "__main__": |
| # Read information about how to connect back to the JVM from the environment. |
| conn_info = os.environ.get( |
| "PYTHON_WORKER_FACTORY_SOCK_PATH", int(os.environ.get("PYTHON_WORKER_FACTORY_PORT", -1)) |
| ) |
| auth_secret = os.environ.get("PYTHON_WORKER_FACTORY_SECRET") |
| (sock_file, _) = local_connect_and_auth(conn_info, auth_secret) |
| # TODO: Remove the following two lines and use `Process.pid()` when we drop JDK 8. |
| write_int(os.getpid(), sock_file) |
| sock_file.flush() |
| main(sock_file, sock_file) |