blob: 8111bb79d3c75c5f28a5fa36a487f1a9a201c1b2 [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import Iterator
import itertools
import unittest
from pyspark.sql.functions import udf, arrow_udf, pandas_udf
from pyspark.testing.sqlutils import ReusedSQLTestCase
from pyspark.testing.utils import (
have_pandas,
have_pyarrow,
pandas_requirement_message,
pyarrow_requirement_message,
)
@unittest.skipIf(
not have_pandas or not have_pyarrow,
pandas_requirement_message or pyarrow_requirement_message,
)
class UDFCombinationsTestsMixin:
@property
def python_udf_add1(self):
@udf("long")
def py_add1(v):
assert isinstance(v, int)
return v + 1
return py_add1
@property
def arrow_opt_python_udf_add1(self):
@udf("long")
def py_arrow_opt_add1(v, useArrow=True):
assert isinstance(v, int)
return v + 1
return py_arrow_opt_add1
@property
def pandas_udf_add1(self):
import pandas as pd
@pandas_udf("long")
def pandas_add1(s):
assert isinstance(s, pd.Series)
return s + 1
return pandas_add1
@property
def pandas_iter_udf_add1(self):
import pandas as pd
@pandas_udf("long")
def pandas_iter_add1(it: Iterator[pd.Series]) -> Iterator[pd.Series]:
for s in it:
assert isinstance(s, pd.Series)
yield s + 1
return pandas_iter_add1
@property
def arrow_udf_add1(self):
import pyarrow as pa
@arrow_udf("long")
def arrow_add1(a):
assert isinstance(a, pa.Array)
return pa.compute.add(a, 1)
return arrow_add1
@property
def arrow_iter_udf_add1(self):
import pyarrow as pa
@arrow_udf("long")
def arrow_iter_add1(it: Iterator[pa.Array]) -> Iterator[pa.Array]:
for a in it:
assert isinstance(a, pa.Array)
yield pa.compute.add(a, 1)
return arrow_iter_add1
def all_scalar_functions(self):
return [
self.python_udf_add1,
self.arrow_opt_python_udf_add1,
self.pandas_udf_add1,
self.pandas_iter_udf_add1,
self.arrow_udf_add1,
self.arrow_iter_udf_add1,
]
def test_combination_2(self):
df = self.spark.range(10)
expected = df.selectExpr("id + 2 AS res").collect()
combs = itertools.combinations(self.all_scalar_functions(), 2)
for f1, f2 in combs:
with self.subTest(
udf1=f1.__name__,
udf2=f2.__name__,
):
result = df.select(f1(f2("id")).alias("res"))
self.assertEqual(expected, result.collect())
def test_combination_3(self):
df = self.spark.range(10)
expected = df.selectExpr("id + 3 AS res").collect()
combs = itertools.combinations(self.all_scalar_functions(), 3)
for f1, f2, f3 in combs:
with self.subTest(
udf1=f1.__name__,
udf2=f2.__name__,
udf3=f3.__name__,
):
result = df.select(f1(f2(f3("id"))).alias("res"))
self.assertEqual(expected, result.collect())
def test_combination_4(self):
df = self.spark.range(10)
expected = df.selectExpr("id + 4 AS res").collect()
combs = itertools.combinations(self.all_scalar_functions(), 4)
for f1, f2, f3, f4 in combs:
with self.subTest(
udf1=f1.__name__,
udf2=f2.__name__,
udf3=f3.__name__,
udf4=f4.__name__,
):
result = df.select(f1(f2(f3(f4("id")))).alias("res"))
self.assertEqual(expected, result.collect())
def test_combination_5(self):
df = self.spark.range(10)
expected = df.selectExpr("id + 5 AS res").collect()
combs = itertools.combinations(self.all_scalar_functions(), 5)
for f1, f2, f3, f4, f5 in combs:
with self.subTest(
udf1=f1.__name__,
udf2=f2.__name__,
udf3=f3.__name__,
udf4=f4.__name__,
udf5=f5.__name__,
):
result = df.select(f1(f2(f3(f4(f5("id"))))).alias("res"))
self.assertEqual(expected, result.collect())
def test_combination_6(self):
df = self.spark.range(10)
expected = df.selectExpr("id + 6 AS res").collect()
combs = itertools.combinations(self.all_scalar_functions(), 6)
for f1, f2, f3, f4, f5, f6 in combs:
with self.subTest(
udf1=f1.__name__,
udf2=f2.__name__,
udf3=f3.__name__,
udf4=f4.__name__,
udf5=f5.__name__,
udf6=f6.__name__,
):
result = df.select(f1(f2(f3(f4(f5(f6("id")))))).alias("res"))
self.assertEqual(expected, result.collect())
class UDFCombinationsTests(UDFCombinationsTestsMixin, ReusedSQLTestCase):
@classmethod
def setUpClass(cls):
ReusedSQLTestCase.setUpClass()
cls.spark.conf.set("spark.sql.execution.pythonUDF.arrow.enabled", "false")
if __name__ == "__main__":
from pyspark.sql.tests.test_udf_combinations import * # noqa: F401
try:
import xmlrunner # type: ignore
testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2)
except ImportError:
testRunner = None
unittest.main(testRunner=testRunner, verbosity=2)