| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| import unittest |
| |
| from pyspark.sql.functions import spark_partition_id, col, lit, when |
| from pyspark.sql.types import ( |
| StringType, |
| IntegerType, |
| DoubleType, |
| StructType, |
| StructField, |
| ) |
| from pyspark.errors import PySparkTypeError, PySparkValueError |
| from pyspark.testing.sqlutils import ReusedSQLTestCase |
| |
| |
| class DataFrameRepartitionTestsMixin: |
| def test_repartition(self): |
| df = self.spark.createDataFrame([(14, "Tom"), (23, "Alice"), (16, "Bob")], ["age", "name"]) |
| with self.assertRaises(PySparkTypeError) as pe: |
| df.repartition([10], "name", "age").rdd.getNumPartitions() |
| |
| self.check_error( |
| exception=pe.exception, |
| errorClass="NOT_COLUMN_OR_STR", |
| messageParameters={"arg_name": "numPartitions", "arg_type": "list"}, |
| ) |
| |
| def test_repartition_by_range(self): |
| schema = StructType( |
| [ |
| StructField("name", StringType(), True), |
| StructField("age", IntegerType(), True), |
| StructField("height", DoubleType(), True), |
| ] |
| ) |
| |
| df1 = self.spark.createDataFrame( |
| [("Bob", 27, 66.0), ("Alice", 10, 10.0), ("Bob", 10, 66.0)], schema |
| ) |
| df2 = self.spark.createDataFrame( |
| [("Alice", 10, 10.0), ("Bob", 10, 66.0), ("Bob", 27, 66.0)], schema |
| ) |
| |
| # test repartitionByRange(numPartitions, *cols) |
| df3 = df1.repartitionByRange(2, "name", "age") |
| |
| self.assertEqual(df3.select(spark_partition_id()).distinct().count(), 2) |
| self.assertEqual(df3.first(), df2.first()) |
| self.assertEqual(df3.take(3), df2.take(3)) |
| |
| # test repartitionByRange(numPartitions, *cols) |
| df4 = df1.repartitionByRange(3, "name", "age") |
| self.assertEqual(df4.select(spark_partition_id()).distinct().count(), 3) |
| self.assertEqual(df4.first(), df2.first()) |
| self.assertEqual(df4.take(3), df2.take(3)) |
| |
| # test repartitionByRange(*cols) |
| df5 = df1.repartitionByRange(5, "name", "age") |
| self.assertEqual(df5.first(), df2.first()) |
| self.assertEqual(df5.take(3), df2.take(3)) |
| |
| with self.assertRaises(PySparkTypeError) as pe: |
| df1.repartitionByRange([10], "name", "age") |
| |
| self.check_error( |
| exception=pe.exception, |
| errorClass="NOT_COLUMN_OR_INT_OR_STR", |
| messageParameters={"arg_name": "numPartitions", "arg_type": "list"}, |
| ) |
| |
| def test_repartition_by_id(self): |
| # Test basic partition ID passthrough behavior |
| numPartitions = 10 |
| df = self.spark.range(100).withColumn("expected_p_id", col("id") % numPartitions) |
| repartitioned = df.repartitionById(numPartitions, col("expected_p_id").cast("int")) |
| result = repartitioned.withColumn("actual_p_id", spark_partition_id()) |
| |
| # All rows should be in their expected partitions |
| self.assertEqual(result.filter(col("expected_p_id") != col("actual_p_id")).count(), 0) |
| |
| def test_repartition_by_id_negative_values(self): |
| df = self.spark.range(10).toDF("id") |
| repartitioned = df.repartitionById(10, (col("id") - 5).cast("int")) |
| result = repartitioned.withColumn("actual_p_id", spark_partition_id()).collect() |
| |
| for row in result: |
| actualPartitionId = row["actual_p_id"] |
| id_val = row["id"] |
| expectedPartitionId = int((id_val - 5) % 10) |
| self.assertEqual( |
| actualPartitionId, |
| expectedPartitionId, |
| f"Row with id={id_val} should be in partition {expectedPartitionId}, " |
| f"but was in partition {actualPartitionId}", |
| ) |
| |
| def test_repartition_by_id_null_values(self): |
| # Test that null partition ids go to partition 0 |
| df = self.spark.range(10).toDF("id") |
| partitionExpr = when(col("id") < 5, col("id")).otherwise(lit(None)).cast("int") |
| repartitioned = df.repartitionById(10, partitionExpr) |
| result = repartitioned.withColumn("actual_p_id", spark_partition_id()).collect() |
| |
| nullRows = [row for row in result if row["id"] >= 5] |
| self.assertTrue(len(nullRows) > 0, "Should have rows with null partition expression") |
| for row in nullRows: |
| self.assertEqual( |
| row["actual_p_id"], |
| 0, |
| f"Row with null partition id should go to partition 0, " |
| f"but went to partition {row['actual_p_id']}", |
| ) |
| |
| nonNullRows = [row for row in result if row["id"] < 5] |
| for row in nonNullRows: |
| id_val = row["id"] |
| actualPartitionId = row["actual_p_id"] |
| expectedPartitionId = id_val % 10 |
| self.assertEqual( |
| actualPartitionId, |
| expectedPartitionId, |
| f"Row with id={id_val} should be in partition {expectedPartitionId}, " |
| f"but was in partition {actualPartitionId}", |
| ) |
| |
| def test_repartition_by_id_error_non_int_type(self): |
| # Test error for non-integer partition column type |
| df = self.spark.range(5).withColumn("s", lit("a")) |
| with self.assertRaises(Exception): # Should raise analysis exception |
| df.repartitionById(5, col("s")).collect() |
| |
| def test_repartition_by_id_error_invalid_num_partitions(self): |
| df = self.spark.range(5) |
| |
| with self.assertRaises(PySparkTypeError) as pe: |
| df.repartitionById("5", col("id").cast("int")) |
| self.check_error( |
| exception=pe.exception, |
| errorClass="NOT_INT", |
| messageParameters={"arg_name": "numPartitions", "arg_type": "str"}, |
| ) |
| |
| with self.assertRaises(PySparkValueError) as pe: |
| df.repartitionById(0, col("id").cast("int")) |
| self.check_error( |
| exception=pe.exception, |
| errorClass="VALUE_NOT_POSITIVE", |
| messageParameters={"arg_name": "numPartitions", "arg_value": "0"}, |
| ) |
| |
| # Test negative numPartitions |
| with self.assertRaises(PySparkValueError) as pe: |
| df.repartitionById(-1, col("id").cast("int")) |
| self.check_error( |
| exception=pe.exception, |
| errorClass="VALUE_NOT_POSITIVE", |
| messageParameters={"arg_name": "numPartitions", "arg_value": "-1"}, |
| ) |
| |
| def test_repartition_by_id_out_of_range(self): |
| numPartitions = 10 |
| df = self.spark.range(20).toDF("id") |
| repartitioned = df.repartitionById(numPartitions, col("id").cast("int")) |
| result = repartitioned.collect() |
| |
| self.assertEqual(len(result), 20) |
| # Skip RDD partition count check for Connect mode since RDD is not available |
| try: |
| self.assertEqual(repartitioned.rdd.getNumPartitions(), numPartitions) |
| except Exception: |
| # Connect mode doesn't support RDD operations, so we skip this check |
| pass |
| |
| def test_repartition_by_id_string_column_name(self): |
| numPartitions = 5 |
| df = self.spark.range(25).withColumn( |
| "partition_id", (col("id") % numPartitions).cast("int") |
| ) |
| repartitioned = df.repartitionById(numPartitions, "partition_id") |
| result = repartitioned.withColumn("actual_p_id", spark_partition_id()) |
| |
| mismatches = result.filter(col("partition_id") != col("actual_p_id")).count() |
| self.assertEqual(mismatches, 0) |
| |
| |
| class DataFrameRepartitionTests( |
| DataFrameRepartitionTestsMixin, |
| ReusedSQLTestCase, |
| ): |
| pass |
| |
| |
| if __name__ == "__main__": |
| from pyspark.sql.tests.test_repartition import * # noqa: F401 |
| |
| try: |
| import xmlrunner # type: ignore |
| |
| testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) |
| except ImportError: |
| testRunner = None |
| unittest.main(testRunner=testRunner, verbosity=2) |