blob: e2ebfd3c092c4fe095f57837832424cb04d1a0d5 [file] [log] [blame]
# -*- encoding: utf-8 -*-
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from enum import Enum
from itertools import chain
import datetime
import unittest
from pyspark.sql import Column, Row
from pyspark.sql import functions as sf
from pyspark.sql.types import StructType, StructField, IntegerType, LongType
from pyspark.errors import AnalysisException, PySparkTypeError, PySparkValueError
from pyspark.testing.sqlutils import ReusedSQLTestCase, have_pandas, pandas_requirement_message
class ColumnTestsMixin:
def test_column_name_encoding(self):
"""Ensure that created columns has `str` type consistently."""
columns = self.spark.createDataFrame([("Alice", 1)], ["name", "age"]).columns
self.assertEqual(columns, ["name", "age"])
self.assertTrue(isinstance(columns[0], str))
self.assertTrue(isinstance(columns[1], str))
def test_and_in_expression(self):
self.assertEqual(4, self.df.filter((self.df.key <= 10) & (self.df.value <= "2")).count())
self.assertRaises(ValueError, lambda: (self.df.key <= 10) and (self.df.value <= "2"))
self.assertEqual(14, self.df.filter((self.df.key <= 3) | (self.df.value < "2")).count())
self.assertRaises(ValueError, lambda: self.df.key <= 3 or self.df.value < "2")
self.assertEqual(99, self.df.filter(~(self.df.key == 1)).count())
self.assertRaises(ValueError, lambda: not self.df.key == 1)
def test_validate_column_types(self):
from pyspark.sql.functions import udf, to_json
from pyspark.sql.classic.column import _to_java_column
self.assertTrue("Column" in _to_java_column("a").getClass().toString())
self.assertTrue("Column" in _to_java_column("a").getClass().toString())
self.assertTrue("Column" in _to_java_column(self.spark.range(1).id).getClass().toString())
with self.assertRaises(PySparkTypeError) as pe:
_to_java_column(1)
self.check_error(
exception=pe.exception,
errorClass="NOT_COLUMN_OR_STR",
messageParameters={"arg_name": "col", "arg_type": "int"},
)
class A:
pass
self.assertRaises(TypeError, lambda: _to_java_column(A()))
self.assertRaises(TypeError, lambda: _to_java_column([]))
with self.assertRaises(PySparkTypeError) as pe:
udf(lambda x: x)(None)
self.check_error(
exception=pe.exception,
errorClass="NOT_COLUMN_OR_STR",
messageParameters={"arg_name": "col", "arg_type": "NoneType"},
)
self.assertRaises(TypeError, lambda: to_json(1))
def test_column_operators(self):
ci = self.df.key
cs = self.df.value
ci == cs
self.assertTrue(isinstance((-ci - 1 - 2) % 3 * 2.5 / 3.5, Column))
rcc = (1 + ci), (1 - ci), (1 * ci), (1 / ci), (1 % ci), (1**ci), (ci**1)
self.assertTrue(all(isinstance(c, Column) for c in rcc))
cb = [ci == 5, ci != 0, ci > 3, ci < 4, ci >= 0, ci <= 7]
self.assertTrue(all(isinstance(c, Column) for c in cb))
cbool = (ci & ci), (ci | ci), (~ci)
self.assertTrue(all(isinstance(c, Column) for c in cbool))
css = (
cs.contains("a"),
cs.like("a"),
cs.rlike("a"),
cs.ilike("A"),
cs.asc(),
cs.desc(),
cs.startswith("a"),
cs.endswith("a"),
ci.eqNullSafe(cs),
sf.col("b") & sf.lit(True),
sf.col("b") & True,
sf.lit(True) & sf.col("b"),
True & sf.col("b"),
sf.col("b") | sf.lit(True),
sf.col("b") | True,
sf.lit(True) | sf.col("b"),
True | sf.col("b"),
)
self.assertTrue(all(isinstance(c, Column) for c in css))
self.assertTrue(isinstance(ci.cast(LongType()), Column))
self.assertRaisesRegex(
ValueError, "Cannot apply 'in' operator against a column", lambda: 1 in cs
)
def test_column_accessor(self):
from pyspark.sql.functions import col
self.assertIsInstance(col("foo")[1:3], Column)
self.assertIsInstance(col("foo")[0], Column)
self.assertIsInstance(col("foo")["bar"], Column)
self.assertRaises(ValueError, lambda: col("foo")[0:10:2])
def test_column_select(self):
df = self.df
self.assertEqual(self.testData, df.select("*").collect())
self.assertEqual(self.testData, df.select(df.key, df.value).collect())
self.assertEqual([Row(value="1")], df.where(df.key == 1).select(df.value).collect())
def test_access_column(self):
df = self.df
self.assertTrue(isinstance(df.key, Column))
self.assertTrue(isinstance(df["key"], Column))
self.assertTrue(isinstance(df[0], Column))
self.assertRaises(IndexError, lambda: df[2])
self.assertRaises(TypeError, lambda: df[{}])
self.assertRaises(AnalysisException, lambda: df.select(df["bad_key"]).schema)
def test_column_name_with_non_ascii(self):
columnName = "数量"
self.assertTrue(isinstance(columnName, str))
schema = StructType([StructField(columnName, LongType(), True)])
df = self.spark.createDataFrame([(1,)], schema)
self.assertEqual(schema, df.schema)
self.assertEqual("DataFrame[数量: bigint]", str(df))
self.assertEqual([("数量", "bigint")], df.dtypes)
self.assertEqual(1, df.select("数量").first()[0])
self.assertEqual(1, df.select(df["数量"]).first()[0])
self.assertTrue(columnName in repr(df[columnName]))
def test_field_accessor(self):
df = self.spark.createDataFrame([Row(l=[1], r=Row(a=1, b="b"), d={"k": "v"})])
self.assertEqual(1, df.select(df.l[0]).first()[0])
self.assertEqual(1, df.select(df.r["a"]).first()[0])
self.assertEqual(1, df.select(df["r.a"]).first()[0])
self.assertEqual("b", df.select(df.r["b"]).first()[0])
self.assertEqual("b", df.select(df["r.b"]).first()[0])
self.assertEqual("v", df.select(df.d["k"]).first()[0])
def test_bitwise_operations(self):
from pyspark.sql import functions
row = Row(a=170, b=75)
df = self.spark.createDataFrame([row])
result = df.select(df.a.bitwiseAND(df.b)).collect()[0].asDict()
self.assertEqual(170 & 75, result["(a & b)"])
result = df.select(df.a.bitwiseOR(df.b)).collect()[0].asDict()
self.assertEqual(170 | 75, result["(a | b)"])
result = df.select(df.a.bitwiseXOR(df.b)).collect()[0].asDict()
self.assertEqual(170 ^ 75, result["(a ^ b)"])
result = df.select(functions.bitwiseNOT(df.b)).collect()[0].asDict()
self.assertEqual(~75, result["~b"])
result = df.select(functions.bitwise_not(df.b)).collect()[0].asDict()
self.assertEqual(~75, result["~b"])
def test_with_field(self):
from pyspark.sql.functions import lit, col
df = self.spark.createDataFrame([Row(a=Row(b=1, c=2))])
self.assertIsInstance(df["a"].withField("b", lit(3)), Column)
self.assertIsInstance(df["a"].withField("d", lit(3)), Column)
result = df.withColumn("a", df["a"].withField("d", lit(3))).collect()[0].asDict()
self.assertEqual(3, result["a"]["d"])
result = df.withColumn("a", df["a"].withField("b", lit(3))).collect()[0].asDict()
self.assertEqual(3, result["a"]["b"])
with self.assertRaises(PySparkTypeError) as pe:
df["a"].withField("b", 3)
self.check_error(
exception=pe.exception,
errorClass="NOT_COLUMN",
messageParameters={"arg_name": "col", "arg_type": "int"},
)
with self.assertRaises(PySparkTypeError) as pe:
df["a"].withField(col("b"), lit(3))
self.check_error(
exception=pe.exception,
errorClass="NOT_STR",
messageParameters={"arg_name": "fieldName", "arg_type": "Column"},
)
def test_drop_fields(self):
df = self.spark.createDataFrame([Row(a=Row(b=1, c=2, d=Row(e=3, f=4)))])
self.assertIsInstance(df["a"].dropFields("b"), Column)
self.assertIsInstance(df["a"].dropFields("b", "c"), Column)
self.assertIsInstance(df["a"].dropFields("d.e"), Column)
result = (
df.select(
df["a"].dropFields("b").alias("a1"),
df["a"].dropFields("d.e").alias("a2"),
)
.first()
.asDict(True)
)
self.assertTrue("b" not in result["a1"] and "c" in result["a1"] and "d" in result["a1"])
self.assertTrue("e" not in result["a2"]["d"] and "f" in result["a2"]["d"])
def test_getitem_column(self):
mapping = {"A": "20", "B": "28", "C": "34"}
mapping_expr = sf.create_map([sf.lit(x) for x in chain(*mapping.items())])
df = self.spark.createDataFrame(
data=[["A", "10"], ["B", "14"], ["C", "17"]],
schema=["key", "value"],
).withColumn("square_value", mapping_expr[sf.col("key")])
self.assertEqual(df.count(), 3)
def test_alias_negative(self):
with self.assertRaises(PySparkValueError) as pe:
self.spark.range(1).id.alias("a", "b", metadata={})
self.check_error(
exception=pe.exception,
errorClass="ONLY_ALLOWED_FOR_SINGLE_COLUMN",
messageParameters={"arg_name": "metadata"},
)
def test_cast_str_representation(self):
self.assertEqual(str(sf.col("a").cast("int")), "Column<'CAST(a AS INT)'>")
self.assertEqual(str(sf.col("a").cast("INT")), "Column<'CAST(a AS INT)'>")
self.assertEqual(str(sf.col("a").cast(IntegerType())), "Column<'CAST(a AS INT)'>")
self.assertEqual(str(sf.col("a").cast(LongType())), "Column<'CAST(a AS BIGINT)'>")
self.assertEqual(str(sf.col("a").try_cast("int")), "Column<'TRY_CAST(a AS INT)'>")
self.assertEqual(str(sf.col("a").try_cast("INT")), "Column<'TRY_CAST(a AS INT)'>")
self.assertEqual(str(sf.col("a").try_cast(IntegerType())), "Column<'TRY_CAST(a AS INT)'>")
self.assertEqual(str(sf.col("a").try_cast(LongType())), "Column<'TRY_CAST(a AS BIGINT)'>")
def test_cast_negative(self):
with self.assertRaises(PySparkTypeError) as pe:
self.spark.range(1).id.cast(123)
self.check_error(
exception=pe.exception,
errorClass="NOT_DATATYPE_OR_STR",
messageParameters={"arg_name": "dataType", "arg_type": "int"},
)
def test_over_negative(self):
with self.assertRaises(PySparkTypeError) as pe:
self.spark.range(1).id.over(123)
self.check_error(
exception=pe.exception,
errorClass="NOT_WINDOWSPEC",
messageParameters={"arg_name": "window", "arg_type": "int"},
)
def test_eqnullsafe_classmethod_usage(self):
df = self.spark.range(1)
self.assertEqual(df.select(Column.eqNullSafe(df.id, df.id)).first()[0], True)
def test_isinstance_dataframe(self):
self.assertIsInstance(self.spark.range(1).id, Column)
def test_expr_str_representation(self):
expression = sf.expr("foo")
when_cond = sf.when(expression, sf.lit(None))
self.assertEqual(str(when_cond), "Column<'CASE WHEN foo THEN NULL END'>")
def test_col_field_ops_representation(self):
# SPARK-49894: Test string representation of columns
c = sf.col("c")
# getField
self.assertEqual(str(c.x), "Column<'c['x']'>")
self.assertEqual(str(c.x.y), "Column<'c['x']['y']'>")
self.assertEqual(str(c.x.y.z), "Column<'c['x']['y']['z']'>")
self.assertEqual(str(c["x"]), "Column<'c['x']'>")
self.assertEqual(str(c["x"]["y"]), "Column<'c['x']['y']'>")
self.assertEqual(str(c["x"]["y"]["z"]), "Column<'c['x']['y']['z']'>")
self.assertEqual(str(c.getField("x")), "Column<'c['x']'>")
self.assertEqual(
str(c.getField("x").getField("y")),
"Column<'c['x']['y']'>",
)
self.assertEqual(
str(c.getField("x").getField("y").getField("z")),
"Column<'c['x']['y']['z']'>",
)
self.assertEqual(str(c.getItem("x")), "Column<'c['x']'>")
self.assertEqual(
str(c.getItem("x").getItem("y")),
"Column<'c['x']['y']'>",
)
self.assertEqual(
str(c.getItem("x").getItem("y").getItem("z")),
"Column<'c['x']['y']['z']'>",
)
self.assertEqual(
str(c.x["y"].getItem("z")),
"Column<'c['x']['y']['z']'>",
)
self.assertEqual(
str(c["x"].getField("y").getItem("z")),
"Column<'c['x']['y']['z']'>",
)
self.assertEqual(
str(c.getField("x").getItem("y").z),
"Column<'c['x']['y']['z']'>",
)
self.assertEqual(
str(c["x"].y.getField("z")),
"Column<'c['x']['y']['z']'>",
)
# WithField
self.assertEqual(
str(c.withField("x", sf.col("y"))),
"Column<'update_field(c, x, y)'>",
)
self.assertEqual(
str(c.withField("x", sf.col("y")).withField("x", sf.col("z"))),
"Column<'update_field(update_field(c, x, y), x, z)'>",
)
# DropFields
self.assertEqual(str(c.dropFields("x")), "Column<'drop_field(c, x)'>")
self.assertEqual(
str(c.dropFields("x", "y")),
"Column<'drop_field(drop_field(c, x), y)'>",
)
self.assertEqual(
str(c.dropFields("x", "y", "z")),
"Column<'drop_field(drop_field(drop_field(c, x), y), z)'>",
)
def test_lit_time_representation(self):
dt = datetime.date(2021, 3, 4)
self.assertEqual(str(sf.lit(dt)), "Column<'2021-03-04'>")
ts = datetime.datetime(2021, 3, 4, 12, 34, 56, 1234)
self.assertEqual(str(sf.lit(ts)), "Column<'2021-03-04 12:34:56.001234'>")
ts = datetime.time(12, 34, 56, 1234)
self.assertEqual(str(sf.lit(ts)), "Column<'12:34:56.001234'>")
@unittest.skipIf(not have_pandas, pandas_requirement_message)
def test_lit_delta_representation(self):
for delta in [
datetime.timedelta(days=1),
datetime.timedelta(hours=2),
datetime.timedelta(minutes=3),
datetime.timedelta(seconds=4),
datetime.timedelta(microseconds=5),
datetime.timedelta(days=2, hours=21, microseconds=908),
datetime.timedelta(days=1, minutes=-3, microseconds=-1001),
datetime.timedelta(days=1, hours=2, minutes=3, seconds=4, microseconds=5),
]:
import pandas as pd
# Column<'PT69H0.000908S'> or Column<'P2DT21H0M0.000908S'>
s = str(sf.lit(delta))
# Parse the ISO string representation and compare
self.assertTrue(pd.Timedelta(s[8:-2]).to_pytimedelta() == delta)
def test_enum_literals(self):
class IntEnum(Enum):
X = 1
Y = 2
Z = 3
class BoolEnum(Enum):
T = True
class StrEnum(Enum):
X = "x"
id = sf.col("id")
s = sf.col("s")
b = sf.col("b")
cols, expected = list(
zip(
(id + IntEnum.X, 2),
(id - IntEnum.X, 0),
(id * IntEnum.X, 1),
(id / IntEnum.X, 1.0),
(id % IntEnum.X, 0),
(IntEnum.X + id, 2),
(IntEnum.X - id, 0),
(IntEnum.X * id, 1),
(IntEnum.X / id, 1.0),
(IntEnum.X % id, 0),
(id**IntEnum.X, 1.0),
(IntEnum.X**id, 1, 0),
(id == IntEnum.X, True),
(IntEnum.X == id, True),
(id < IntEnum.X, False),
(id <= IntEnum.X, True),
(id >= IntEnum.X, True),
(id > IntEnum.X, False),
(id.eqNullSafe(IntEnum.X), True),
(b & BoolEnum.T, True),
(b | BoolEnum.T, True),
(BoolEnum.T & b, True),
(BoolEnum.T | b, True),
(id.bitwiseOR(IntEnum.X), 1),
(id.bitwiseAND(IntEnum.X), 1),
(id.bitwiseXOR(IntEnum.X), 0),
(id.contains(IntEnum.X), True),
(s.startswith(StrEnum.X), False),
(s.endswith(StrEnum.X), False),
(s.like(StrEnum.X), False),
(s.rlike(StrEnum.X), False),
(s.ilike(StrEnum.X), False),
(s.substr(IntEnum.X, IntEnum.Y), "1"),
(sf.when(b, IntEnum.X).when(~b, IntEnum.Y).otherwise(IntEnum.Z), 1),
)
)
result = (
self.spark.range(1, 2)
.select(id, id.astype("string").alias("s"), id.astype("boolean").alias("b"))
.select(*cols)
.first()
)
for r, c, e in zip(result, cols, expected):
self.assertEqual(r, e, str(c))
class ColumnTests(ColumnTestsMixin, ReusedSQLTestCase):
pass
if __name__ == "__main__":
import unittest
from pyspark.sql.tests.test_column import * # noqa: F401
try:
import xmlrunner
testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2)
except ImportError:
testRunner = None
unittest.main(testRunner=testRunner, verbosity=2)