blob: 23fceb746114f9c8bf9b8bbf55380ec61cd219a5 [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import unittest
import datetime
from typing import cast
from pyspark.sql.functions import udf, pandas_udf, PandasUDFType, assert_true, lit
from pyspark.sql.types import (
DoubleType,
StructType,
StructField,
LongType,
DayTimeIntervalType,
VariantType,
)
from pyspark.errors import ParseException, PythonException, PySparkTypeError
from pyspark.util import PythonEvalType
from pyspark.testing.sqlutils import (
ReusedSQLTestCase,
have_pandas,
have_pyarrow,
pandas_requirement_message,
pyarrow_requirement_message,
)
@unittest.skipIf(
not have_pandas or not have_pyarrow,
cast(str, pandas_requirement_message or pyarrow_requirement_message),
)
class PandasUDFTestsMixin:
def test_pandas_udf_basic(self):
udf = pandas_udf(lambda x: x, DoubleType())
self.assertEqual(udf.returnType, DoubleType())
self.assertEqual(udf.evalType, PythonEvalType.SQL_SCALAR_PANDAS_UDF)
udf = pandas_udf(lambda x: x, VariantType())
self.assertEqual(udf.returnType, VariantType())
self.assertEqual(udf.evalType, PythonEvalType.SQL_SCALAR_PANDAS_UDF)
udf = pandas_udf(lambda x: x, DoubleType(), PandasUDFType.SCALAR)
self.assertEqual(udf.returnType, DoubleType())
self.assertEqual(udf.evalType, PythonEvalType.SQL_SCALAR_PANDAS_UDF)
udf = pandas_udf(lambda x: x, VariantType(), PandasUDFType.SCALAR)
self.assertEqual(udf.returnType, VariantType())
self.assertEqual(udf.evalType, PythonEvalType.SQL_SCALAR_PANDAS_UDF)
udf = pandas_udf(
lambda x: x, StructType([StructField("v", DoubleType())]), PandasUDFType.GROUPED_MAP
)
self.assertEqual(udf.returnType, StructType([StructField("v", DoubleType())]))
self.assertEqual(udf.evalType, PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF)
udf = pandas_udf(
lambda x: x, StructType([StructField("v", VariantType())]), PandasUDFType.GROUPED_MAP
)
self.assertEqual(udf.returnType, StructType([StructField("v", VariantType())]))
self.assertEqual(udf.evalType, PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF)
def test_pandas_udf_basic_with_return_type_string(self):
udf = pandas_udf(lambda x: x, "double", PandasUDFType.SCALAR)
self.assertEqual(udf.returnType, DoubleType())
self.assertEqual(udf.evalType, PythonEvalType.SQL_SCALAR_PANDAS_UDF)
udf = pandas_udf(lambda x: x, "variant", PandasUDFType.SCALAR)
self.assertEqual(udf.returnType, VariantType())
self.assertEqual(udf.evalType, PythonEvalType.SQL_SCALAR_PANDAS_UDF)
udf = pandas_udf(lambda x: x, "v double", PandasUDFType.GROUPED_MAP)
self.assertEqual(udf.returnType, StructType([StructField("v", DoubleType())]))
self.assertEqual(udf.evalType, PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF)
udf = pandas_udf(lambda x: x, "v variant", PandasUDFType.GROUPED_MAP)
self.assertEqual(udf.returnType, StructType([StructField("v", VariantType())]))
self.assertEqual(udf.evalType, PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF)
udf = pandas_udf(lambda x: x, "v double", functionType=PandasUDFType.GROUPED_MAP)
self.assertEqual(udf.returnType, StructType([StructField("v", DoubleType())]))
self.assertEqual(udf.evalType, PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF)
udf = pandas_udf(lambda x: x, "v variant", functionType=PandasUDFType.GROUPED_MAP)
self.assertEqual(udf.returnType, StructType([StructField("v", VariantType())]))
self.assertEqual(udf.evalType, PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF)
udf = pandas_udf(lambda x: x, returnType="v double", functionType=PandasUDFType.GROUPED_MAP)
self.assertEqual(udf.returnType, StructType([StructField("v", DoubleType())]))
self.assertEqual(udf.evalType, PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF)
udf = pandas_udf(
lambda x: x, returnType="v variant", functionType=PandasUDFType.GROUPED_MAP
)
self.assertEqual(udf.returnType, StructType([StructField("v", VariantType())]))
self.assertEqual(udf.evalType, PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF)
def test_pandas_udf_decorator(self):
@pandas_udf(DoubleType())
def foo(x):
return x
self.assertEqual(foo.returnType, DoubleType())
self.assertEqual(foo.evalType, PythonEvalType.SQL_SCALAR_PANDAS_UDF)
@pandas_udf(returnType=DoubleType())
def foo(x):
return x
self.assertEqual(foo.returnType, DoubleType())
self.assertEqual(foo.evalType, PythonEvalType.SQL_SCALAR_PANDAS_UDF)
schema = StructType([StructField("v", DoubleType())])
@pandas_udf(schema, PandasUDFType.GROUPED_MAP)
def foo(x):
return x
self.assertEqual(foo.returnType, schema)
self.assertEqual(foo.evalType, PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF)
@pandas_udf(schema, functionType=PandasUDFType.GROUPED_MAP)
def foo(x):
return x
self.assertEqual(foo.returnType, schema)
self.assertEqual(foo.evalType, PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF)
@pandas_udf(returnType=schema, functionType=PandasUDFType.GROUPED_MAP)
def foo(x):
return x
self.assertEqual(foo.returnType, schema)
self.assertEqual(foo.evalType, PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF)
def test_pandas_udf_decorator_with_return_type_string(self):
schema = StructType([StructField("v", DoubleType())])
@pandas_udf("v double", PandasUDFType.GROUPED_MAP)
def foo(x):
return x
self.assertEqual(foo.returnType, schema)
self.assertEqual(foo.evalType, PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF)
@pandas_udf(returnType="double", functionType=PandasUDFType.SCALAR)
def foo(x):
return x
self.assertEqual(foo.returnType, DoubleType())
self.assertEqual(foo.evalType, PythonEvalType.SQL_SCALAR_PANDAS_UDF)
def test_udf_wrong_arg(self):
with self.quiet():
self.check_udf_wrong_arg()
with self.assertRaises(ParseException):
@pandas_udf("blah")
def foo(x):
return x
with self.assertRaises(PySparkTypeError) as pe:
@pandas_udf(returnType="double", functionType=PandasUDFType.GROUPED_MAP)
def foo(df):
return df
self.check_error(
exception=pe.exception,
errorClass="INVALID_RETURN_TYPE_FOR_PANDAS_UDF",
messageParameters={
"eval_type": "SQL_GROUPED_MAP_PANDAS_UDF "
"or SQL_GROUPED_MAP_PANDAS_UDF_WITH_STATE",
"return_type": "DoubleType()",
},
)
with self.assertRaisesRegex(ValueError, "Invalid function"):
@pandas_udf(returnType="k int, v double", functionType=PandasUDFType.GROUPED_MAP)
def foo(k, v, w):
return k
def check_udf_wrong_arg(self):
with self.assertRaises(PySparkTypeError) as pe:
@pandas_udf(functionType=PandasUDFType.SCALAR)
def foo(x):
return x
self.check_error(
exception=pe.exception,
errorClass="CANNOT_BE_NONE",
messageParameters={"arg_name": "returnType"},
)
with self.assertRaises(PySparkTypeError) as pe:
@pandas_udf("double", 100)
def foo(x):
return x
self.check_error(
exception=pe.exception,
errorClass="INVALID_PANDAS_UDF_TYPE",
messageParameters={"arg_name": "functionType", "arg_type": "100"},
)
with self.assertRaisesRegex(ValueError, "0-arg pandas_udfs.*not.*supported"):
pandas_udf(lambda: 1, LongType(), PandasUDFType.SCALAR)
with self.assertRaisesRegex(ValueError, "0-arg pandas_udfs.*not.*supported"):
@pandas_udf(LongType(), PandasUDFType.SCALAR)
def zero_with_type():
return 1
with self.assertRaisesRegex(ValueError, "0-arg pandas_udfs.*not.*supported"):
@pandas_udf(LongType(), PandasUDFType.SCALAR_ITER)
def zero_with_type():
yield 1
yield 2
with self.assertRaises(PySparkTypeError) as pe:
@pandas_udf(returnType=PandasUDFType.GROUPED_MAP)
def foo(df):
return df
self.check_error(
exception=pe.exception,
errorClass="NOT_DATATYPE_OR_STR",
messageParameters={"arg_name": "returnType", "arg_type": "int"},
)
def test_stopiteration_in_udf(self):
def foo(x):
raise StopIteration()
exc_message = "StopIteration"
df = self.spark.range(0, 100)
# plain udf (test for SPARK-23754)
self.assertRaisesRegex(
PythonException, exc_message, df.withColumn("v", udf(foo)("id")).collect
)
# pandas scalar udf
self.assertRaisesRegex(
PythonException,
exc_message,
df.withColumn("v", pandas_udf(foo, "double", PandasUDFType.SCALAR)("id")).collect,
)
def test_stopiteration_in_grouped_map(self):
def foo(x):
raise StopIteration()
def foofoo(x, y):
raise StopIteration()
exc_message = "StopIteration"
df = self.spark.range(0, 100)
# pandas grouped map
self.assertRaisesRegex(
PythonException,
exc_message,
df.groupBy("id").apply(pandas_udf(foo, df.schema, PandasUDFType.GROUPED_MAP)).collect,
)
self.assertRaisesRegex(
PythonException,
exc_message,
df.groupBy("id")
.apply(pandas_udf(foofoo, df.schema, PandasUDFType.GROUPED_MAP))
.collect,
)
def test_stopiteration_in_grouped_agg(self):
def foo(x):
raise StopIteration()
exc_message = "StopIteration"
df = self.spark.range(0, 100)
# pandas grouped agg
self.assertRaisesRegex(
PythonException,
exc_message,
df.groupBy("id")
.agg(pandas_udf(foo, "double", PandasUDFType.GROUPED_AGG)("id"))
.collect,
)
def test_pandas_udf_detect_unsafe_type_conversion(self):
import pandas as pd
import numpy as np
values = [1.0] * 3
pdf = pd.DataFrame({"A": values})
df = self.spark.createDataFrame(pdf).repartition(1)
@pandas_udf(returnType="int")
def udf(column):
return pd.Series(np.linspace(0, 1, len(column)))
# Since 0.11.0, PyArrow supports the feature to raise an error for unsafe cast.
with self.sql_conf({"spark.sql.execution.pandas.convertToArrowArraySafely": True}):
with self.assertRaisesRegex(
Exception, "Exception thrown when converting pandas.Series"
):
df.select(["A"]).withColumn("udf", udf("A")).collect()
# Disabling Arrow safe type check.
with self.sql_conf({"spark.sql.execution.pandas.convertToArrowArraySafely": False}):
df.select(["A"]).withColumn("udf", udf("A")).collect()
def test_pandas_udf_arrow_overflow(self):
import pandas as pd
df = self.spark.range(0, 1)
@pandas_udf(returnType="byte")
def udf(column):
return pd.Series([128] * len(column))
# When enabling safe type check, Arrow 0.11.0+ disallows overflow cast.
with self.sql_conf({"spark.sql.execution.pandas.convertToArrowArraySafely": True}):
with self.assertRaisesRegex(
Exception, "Exception thrown when converting pandas.Series"
):
df.withColumn("udf", udf("id")).collect()
# Disabling safe type check, let Arrow do the cast anyway.
with self.sql_conf({"spark.sql.execution.pandas.convertToArrowArraySafely": False}):
df.withColumn("udf", udf("id")).collect()
def test_pandas_udf_int_to_decimal_coercion(self):
import pandas as pd
from decimal import Decimal
df = self.spark.range(0, 3)
@pandas_udf(returnType="decimal(10,2)")
def int_to_decimal_udf(column):
values = [123, 456, 789]
return pd.Series([values[int(val) % len(values)] for val in column])
with self.sql_conf(
{"spark.sql.execution.pythonUDF.pandas.intToDecimalCoercionEnabled": True}
):
result = df.withColumn("decimal_val", int_to_decimal_udf("id")).collect()
self.assertEqual(result[0]["decimal_val"], 123.00)
self.assertEqual(result[1]["decimal_val"], 456.00)
self.assertEqual(result[2]["decimal_val"], 789.00)
with self.sql_conf(
{"spark.sql.execution.pythonUDF.pandas.intToDecimalCoercionEnabled": False}
):
self.assertRaisesRegex(
PythonException,
"Exception thrown when converting pandas.Series",
df.withColumn("decimal_val", int_to_decimal_udf("id")).collect,
)
@pandas_udf(returnType="decimal(25,1)")
def high_precision_udf(column):
values = [1, 2, 3]
return pd.Series([values[int(val) % len(values)] for val in column])
for intToDecimalCoercionEnabled in [True, False]:
# arrow_cast is enabled by default for SQL_SCALAR_PANDAS_UDF and
# and SQL_SCALAR_PANDAS_ITER_UDF, arrow can do this cast safely.
# intToDecimalCoercionEnabled is not required for this case
with self.sql_conf(
{
"spark.sql.execution.pythonUDF.pandas.intToDecimalCoercionEnabled": intToDecimalCoercionEnabled # noqa: E501
}
):
result = df.withColumn("decimal_val", high_precision_udf("id")).collect()
self.assertEqual(len(result), 3)
self.assertEqual(result[0]["decimal_val"], Decimal("1.0"))
self.assertEqual(result[1]["decimal_val"], Decimal("2.0"))
self.assertEqual(result[2]["decimal_val"], Decimal("3.0"))
def test_pandas_udf_timestamp_ntz(self):
# SPARK-36626: Test TimestampNTZ in pandas UDF
@pandas_udf(returnType="timestamp_ntz")
def noop(s):
assert s.iloc[0] == datetime.datetime(1970, 1, 1, 0, 0)
return s
with self.sql_conf({"spark.sql.session.timeZone": "Asia/Hong_Kong"}):
df = self.spark.createDataFrame(
[(datetime.datetime(1970, 1, 1, 0, 0),)], schema="dt timestamp_ntz"
).select(noop("dt").alias("dt"))
df.selectExpr("assert_true('1970-01-01 00:00:00' == CAST(dt AS STRING))").collect()
self.assertEqual(df.schema[0].dataType.typeName(), "timestamp_ntz")
self.assertEqual(df.first()[0], datetime.datetime(1970, 1, 1, 0, 0))
def test_pandas_udf_day_time_interval_type(self):
# SPARK-37277: Test DayTimeIntervalType in pandas UDF
import pandas as pd
@pandas_udf(DayTimeIntervalType(DayTimeIntervalType.DAY, DayTimeIntervalType.SECOND))
def noop(s: pd.Series) -> pd.Series:
assert s.iloc[0] == datetime.timedelta(microseconds=123)
return s
df = self.spark.createDataFrame(
[(datetime.timedelta(microseconds=123),)], schema="td interval day to second"
).select(noop("td").alias("td"))
df.select(
assert_true(lit("INTERVAL '0 00:00:00.000123' DAY TO SECOND") == df.td.cast("string"))
).collect()
self.assertEqual(df.schema[0].dataType.simpleString(), "interval day to second")
self.assertEqual(df.first()[0], datetime.timedelta(microseconds=123))
def test_pandas_udf_return_type_error(self):
import pandas as pd
@pandas_udf("s string")
def upper(s: pd.Series) -> pd.Series:
return s.str.upper()
df = self.spark.createDataFrame([("a",)], schema="s string")
self.assertRaisesRegex(
PythonException, "Invalid return type", df.select(upper("s")).collect
)
def test_pandas_udf_empty_frame(self):
import pandas as pd
empty_df = self.spark.createDataFrame([], "id long")
@pandas_udf("long")
def add1(x: pd.Series) -> pd.Series:
return x + 1
result = empty_df.select(add1("id"))
self.assertEqual(result.collect(), [])
class PandasUDFTests(PandasUDFTestsMixin, ReusedSQLTestCase):
pass
if __name__ == "__main__":
from pyspark.sql.tests.pandas.test_pandas_udf import * # noqa: F401
try:
import xmlrunner
testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2)
except ImportError:
testRunner = None
unittest.main(testRunner=testRunner, verbosity=2)