blob: 43c41ed54ebda5d4f64235a21c4aad498969c672 [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import shutil
import tempfile
import time
import unittest
import logging
from pyspark.loose_version import LooseVersion
from pyspark.sql import Row
from pyspark.sql.functions import col, encode, lit
from pyspark.errors import PythonException
from pyspark.sql.session import SparkSession
from pyspark.sql.types import StructType
from pyspark.testing.sqlutils import (
ReusedSQLTestCase,
have_pandas,
have_pyarrow,
pandas_requirement_message,
pyarrow_requirement_message,
)
from pyspark.testing.utils import assertDataFrameEqual, eventually
from pyspark.util import is_remote_only
if have_pandas:
import pandas as pd
@unittest.skipIf(
not have_pandas or not have_pyarrow,
pandas_requirement_message or pyarrow_requirement_message,
)
class MapInPandasTestsMixin:
spark: SparkSession
@staticmethod
def identity_dataframes_iter(*columns: str):
def func(iterator):
for pdf in iterator:
assert isinstance(pdf, pd.DataFrame)
assert pdf.columns.tolist() == list(columns)
yield pdf
return func
@staticmethod
def identity_dataframes_wo_column_names_iter(*columns: str):
def func(iterator):
for pdf in iterator:
assert isinstance(pdf, pd.DataFrame)
assert pdf.columns.tolist() == list(columns)
yield pdf.rename(columns=list(pdf.columns).index)
return func
@staticmethod
def dataframes_and_empty_dataframe_iter(*columns: str):
def func(iterator):
for pdf in iterator:
yield pdf
# after yielding all elements, also yield an empty dataframe with given columns
yield pd.DataFrame([], columns=list(columns))
return func
def test_map_in_pandas(self):
# test returning iterator of DataFrames
df = self.spark.range(10, numPartitions=3)
actual = df.mapInPandas(self.identity_dataframes_iter("id"), "id long").collect()
expected = df.collect()
self.assertEqual(actual, expected)
# test returning list of DataFrames
df = self.spark.range(10, numPartitions=3)
actual = df.mapInPandas(lambda it: [pdf for pdf in it], "id long").collect()
expected = df.collect()
self.assertEqual(actual, expected)
def test_multiple_columns(self):
data = [(1, "foo"), (2, None), (3, "bar"), (4, "bar")]
df = self.spark.createDataFrame(data, "a int, b string")
def func(iterator):
for pdf in iterator:
assert isinstance(pdf, pd.DataFrame)
if LooseVersion(pd.__version__) < "3.0.0":
assert [d.name for d in list(pdf.dtypes)] == ["int32", "object"]
else:
# https://github.com/apache/arrow/issues/49002
# PyArrow has a bug that it will convert pa.array([None], type="str") to
# pd.Series([None], dtype=object) instead of pd.Series([None], dtype=str).
# So for now we only check that dtype is either object or str.
assert [d.name for d in list(pdf.dtypes)] in (
["int32", "str"],
["int32", "object"],
)
yield pdf
actual = df.mapInPandas(func, df.schema).collect()
expected = df.collect()
self.assertEqual(actual, expected)
def test_large_variable_types(self):
with self.sql_conf({"spark.sql.execution.arrow.useLargeVarTypes": True}):
def func(iterator):
for pdf in iterator:
assert isinstance(pdf, pd.DataFrame)
yield pdf
df = (
self.spark.range(10, numPartitions=3)
.select(col("id").cast("string").alias("str"))
.withColumn("bin", encode(col("str"), "utf-8"))
)
actual = df.mapInPandas(func, "str string, bin binary").collect()
expected = df.collect()
self.assertEqual(actual, expected)
def test_no_column_names(self):
data = [(1, "foo"), (2, None), (3, "bar"), (4, "bar")]
df = self.spark.createDataFrame(data, "a int, b string")
def func(iterator):
for pdf in iterator:
yield pdf.rename(columns=list(pdf.columns).index)
actual = df.mapInPandas(func, df.schema).collect()
expected = df.collect()
self.assertEqual(actual, expected)
def test_not_null(self):
def func(iterator):
for _ in iterator:
yield pd.DataFrame({"a": [1, 2]})
schema = "a long not null"
df = self.spark.range(1).mapInPandas(func, schema)
self.assertEqual(df.schema, StructType.fromDDL(schema))
self.assertEqual(df.collect(), [Row(1), Row(2)])
def test_violate_not_null(self):
def func(iterator):
for _ in iterator:
yield pd.DataFrame({"a": [1, None]})
schema = "a long not null"
df = self.spark.range(1).mapInPandas(func, schema)
self.assertEqual(df.schema, StructType.fromDDL(schema))
with self.assertRaisesRegex(Exception, "is null"):
df.collect()
def test_different_output_length(self):
def func(iterator):
for _ in iterator:
yield pd.DataFrame({"a": list(range(100))})
df = self.spark.range(10)
actual = df.repartition(1).mapInPandas(func, "a long").collect()
self.assertEqual(set((r.a for r in actual)), set(range(100)))
def test_other_than_dataframe_iter(self):
with self.quiet():
self.check_other_than_dataframe_iter()
def check_other_than_dataframe_iter(self):
def no_iter(_):
return 1
def bad_iter_elem(_):
return iter([1])
with self.assertRaisesRegex(
PythonException,
"Return type of the user-defined function should be iterator of pandas.DataFrame, "
"but is int",
):
(self.spark.range(10, numPartitions=3).mapInPandas(no_iter, "a int").count())
with self.assertRaisesRegex(
PythonException,
"Return type of the user-defined function should be iterator of pandas.DataFrame, "
"but is iterator of int",
):
(self.spark.range(10, numPartitions=3).mapInPandas(bad_iter_elem, "a int").count())
def test_dataframes_with_other_column_names(self):
with self.quiet():
self.check_dataframes_with_other_column_names()
def check_dataframes_with_other_column_names(self):
def dataframes_with_other_column_names(iterator):
for pdf in iterator:
yield pdf.rename(columns={"id": "iid"})
with self.assertRaisesRegex(
PythonException,
"PySparkRuntimeError: \\[RESULT_COLUMNS_MISMATCH_FOR_PANDAS_UDF\\] "
"Column names of the returned pandas.DataFrame do not match "
"specified schema. Missing: id. Unexpected: iid.",
):
(
self.spark.range(10, numPartitions=3)
.withColumn("value", lit(0))
.mapInPandas(dataframes_with_other_column_names, "id int, value int")
.collect()
)
def test_dataframes_with_duplicate_column_names(self):
with self.quiet():
self.check_dataframes_with_duplicate_column_names()
def check_dataframes_with_duplicate_column_names(self):
def dataframes_with_other_column_names(iterator):
for pdf in iterator:
yield pdf.rename(columns={"id2": "id"})
with self.assertRaisesRegex(
PythonException,
"PySparkRuntimeError: \\[RESULT_COLUMNS_MISMATCH_FOR_PANDAS_UDF\\] "
"Column names of the returned pandas.DataFrame do not match "
"specified schema. Missing: id2.",
):
(
self.spark.range(10, numPartitions=3)
.withColumn("id2", lit(0))
.withColumn("value", lit(1))
.mapInPandas(dataframes_with_other_column_names, "id int, id2 long, value int")
.collect()
)
def test_dataframes_with_less_columns(self):
with self.quiet():
self.check_dataframes_with_less_columns()
def check_dataframes_with_less_columns(self):
df = self.spark.range(10, numPartitions=3).withColumn("value", lit(0))
with self.assertRaisesRegex(
PythonException,
"PySparkRuntimeError: \\[RESULT_COLUMNS_MISMATCH_FOR_PANDAS_UDF\\] "
"Column names of the returned pandas.DataFrame do not match "
"specified schema. Missing: id2.",
):
f = self.identity_dataframes_iter("id", "value")
(df.mapInPandas(f, "id int, id2 long, value int").collect())
with self.assertRaisesRegex(
PythonException,
"PySparkRuntimeError: \\[RESULT_LENGTH_MISMATCH_FOR_PANDAS_UDF\\] "
"Number of columns of the returned pandas.DataFrame doesn't match "
"specified schema. Expected: 3 Actual: 2",
):
f = self.identity_dataframes_wo_column_names_iter("id", "value")
(df.mapInPandas(f, "id int, id2 long, value int").collect())
def test_dataframes_with_more_columns(self):
df = self.spark.range(10, numPartitions=3).select(
"id", col("id").alias("value"), col("id").alias("extra")
)
expected = df.select("id", "value").collect()
f = self.identity_dataframes_iter("id", "value", "extra")
actual = df.repartition(1).mapInPandas(f, "id long, value long").collect()
self.assertEqual(actual, expected)
f = self.identity_dataframes_wo_column_names_iter("id", "value", "extra")
actual = df.repartition(1).mapInPandas(f, "id long, value long").collect()
self.assertEqual(actual, expected)
def test_dataframes_with_incompatible_types(self):
with self.quiet():
self.check_dataframes_with_incompatible_types()
def check_dataframes_with_incompatible_types(self):
for safely in [True, False]:
with self.subTest(convertToArrowArraySafely=safely), self.sql_conf(
{"spark.sql.execution.pandas.convertToArrowArraySafely": safely}
):
# sometimes we see ValueErrors
with self.subTest(convert="string to double"):
def func(iterator):
for pdf in iterator:
yield pdf.assign(id="test_string")
pandas_type_name = "object" if LooseVersion(pd.__version__) < "3.0.0" else "str"
expected = (
r"ValueError: Exception thrown when converting pandas.Series "
rf"\({pandas_type_name}\) with name 'id' to Arrow Array \(double\)."
)
if safely:
expected = expected + (
" It can be caused by overflows or other "
"unsafe conversions warned by Arrow. Arrow safe type check "
"can be disabled by using SQL config "
"`spark.sql.execution.pandas.convertToArrowArraySafely`."
)
with self.assertRaisesRegex(PythonException, expected):
(
self.spark.range(10, numPartitions=3)
.mapInPandas(func, "id double")
.collect()
)
with self.subTest(convert="float to int precision loss"):
def func(iterator):
for pdf in iterator:
yield pdf.assign(id=pdf["id"] + 0.1)
df = (
self.spark.range(10, numPartitions=3)
.select(col("id").cast("double"))
.mapInPandas(func, "id int")
)
if safely:
expected = (
r"ValueError: Exception thrown when converting pandas.Series "
r"\(float64\) with name 'id' to Arrow Array \(int32\)."
" It can be caused by overflows or other "
"unsafe conversions warned by Arrow. Arrow safe type check "
"can be disabled by using SQL config "
"`spark.sql.execution.pandas.convertToArrowArraySafely`."
)
with self.assertRaisesRegex(PythonException, expected):
df.collect()
else:
self.assertEqual(
df.collect(), self.spark.range(10, numPartitions=3).collect()
)
def test_empty_iterator(self):
def empty_iter(_):
return iter([])
mapped = self.spark.range(10, numPartitions=3).mapInPandas(empty_iter, "a int, b string")
self.assertEqual(mapped.count(), 0)
def test_empty_dataframes(self):
def empty_dataframes(_):
return iter([pd.DataFrame({"a": []})])
mapped = self.spark.range(10, numPartitions=3).mapInPandas(empty_dataframes, "a int")
self.assertEqual(mapped.count(), 0)
def test_empty_dataframes_without_columns(self):
mapped = self.spark.range(10, numPartitions=3).mapInPandas(
self.dataframes_and_empty_dataframe_iter(), "id int"
)
self.assertEqual(mapped.count(), 10)
def test_empty_dataframes_with_less_columns(self):
with self.quiet():
self.check_empty_dataframes_with_less_columns()
def check_empty_dataframes_with_less_columns(self):
with self.assertRaisesRegex(
PythonException,
"PySparkRuntimeError: \\[RESULT_COLUMNS_MISMATCH_FOR_PANDAS_UDF\\] "
"Column names of the returned pandas.DataFrame do not match "
"specified schema. Missing: value.",
):
f = self.dataframes_and_empty_dataframe_iter("id")
(
self.spark.range(10, numPartitions=3)
.withColumn("value", lit(0))
.mapInPandas(f, "id int, value int")
.collect()
)
def test_empty_dataframes_with_more_columns(self):
mapped = self.spark.range(10, numPartitions=3).mapInPandas(
self.dataframes_and_empty_dataframe_iter("id", "extra"), "id int"
)
self.assertEqual(mapped.count(), 10)
def test_empty_dataframes_with_other_columns(self):
with self.quiet():
self.check_empty_dataframes_with_other_columns()
def check_empty_dataframes_with_other_columns(self):
def empty_dataframes_with_other_columns(iterator):
for _ in iterator:
yield pd.DataFrame({"iid": [], "value": []})
with self.assertRaisesRegex(
PythonException,
"PySparkRuntimeError: \\[RESULT_COLUMNS_MISMATCH_FOR_PANDAS_UDF\\] "
"Column names of the returned pandas.DataFrame do not match "
"specified schema. Missing: id. Unexpected: iid.",
):
(
self.spark.range(10, numPartitions=3)
.withColumn("value", lit(0))
.mapInPandas(empty_dataframes_with_other_columns, "id int, value int")
.collect()
)
def test_chain_map_partitions_in_pandas(self):
def func(iterator):
for pdf in iterator:
assert isinstance(pdf, pd.DataFrame)
assert pdf.columns == ["id"]
yield pdf
df = self.spark.range(10, numPartitions=3)
actual = df.mapInPandas(func, "id long").mapInPandas(func, "id long").collect()
expected = df.collect()
self.assertEqual(actual, expected)
def test_self_join(self):
# SPARK-34319: self-join with MapInPandas
df1 = self.spark.range(10, numPartitions=3)
df2 = df1.mapInPandas(lambda iter: iter, "id long")
actual = df2.join(df2).collect()
expected = df1.join(df1).collect()
self.assertEqual(sorted(actual), sorted(expected))
# SPARK-33277
@eventually(timeout=180, catch_assertions=True)
def test_map_in_pandas_with_column_vector(self):
path = tempfile.mkdtemp()
shutil.rmtree(path)
try:
self.spark.range(0, 200000, 1, 1).write.parquet(path)
def func(iterator):
for pdf in iterator:
yield pd.DataFrame({"id": [0] * len(pdf)})
for offheap in ["true", "false"]:
with self.sql_conf({"spark.sql.columnVector.offheap.enabled": offheap}):
self.assertEqual(
self.spark.read.parquet(path).mapInPandas(func, "id long").head(), Row(0)
)
finally:
shutil.rmtree(path)
def test_map_in_pandas_with_barrier_mode(self):
df = self.spark.range(10)
def func1(iterator):
from pyspark import TaskContext, BarrierTaskContext
tc = TaskContext.get()
assert tc is not None
assert not isinstance(tc, BarrierTaskContext)
for batch in iterator:
yield batch
df.mapInPandas(func1, "id long", False).collect()
def func2(iterator):
from pyspark import TaskContext, BarrierTaskContext
tc = TaskContext.get()
assert tc is not None
assert isinstance(tc, BarrierTaskContext)
for batch in iterator:
yield batch
df.mapInPandas(func2, "id long", True).collect()
def test_map_in_pandas_type_mismatch(self):
def func(iterator):
for _ in iterator:
yield pd.DataFrame({"id": ["x", "y"]})
df = self.spark.range(2).mapInPandas(func, "id int")
pandas_type_name = "object" if LooseVersion(pd.__version__) < "3.0.0" else "str"
with self.assertRaisesRegex(
PythonException,
f"PySparkValueError: Exception thrown when converting pandas.Series \\({pandas_type_name}\\) "
"with name 'id' to Arrow Array \\(int32\\)\\.",
):
df.collect()
def test_map_in_pandas_top_level_wrong_order(self):
def func(iterator):
for _ in iterator:
yield pd.DataFrame({"b": [1], "a": [2]})
df = self.spark.range(1)
self.assertEqual([Row(a=2, b=1)], df.mapInPandas(func, "a int, b int").collect())
@unittest.skipIf(is_remote_only(), "Requires JVM access")
def test_map_in_pandas_with_logging(self):
import pandas as pd
def func_with_logging(iterator):
logger = logging.getLogger("test_pandas_map")
for pdf in iterator:
assert isinstance(pdf, pd.DataFrame)
logger.warning(f"pandas map: {list(pdf['id'])}")
yield pdf
with self.sql_conf(
{
"spark.sql.execution.arrow.maxRecordsPerBatch": "3",
"spark.sql.pyspark.worker.logging.enabled": "true",
}
):
assertDataFrameEqual(
self.spark.range(9, numPartitions=2).mapInPandas(func_with_logging, "id long"),
[Row(id=i) for i in range(9)],
)
logs = self.spark.tvf.python_worker_logs()
assertDataFrameEqual(
logs.select("level", "msg", "context", "logger"),
[
Row(
level="WARNING",
msg=f"pandas map: {lst}",
context={"func_name": func_with_logging.__name__},
logger="test_pandas_map",
)
for lst in [[0, 1, 2], [3], [4, 5, 6], [7, 8]]
],
)
class MapInPandasTests(ReusedSQLTestCase, MapInPandasTestsMixin):
@classmethod
def setUpClass(cls):
ReusedSQLTestCase.setUpClass()
# Synchronize default timezone between Python and Java
cls.tz_prev = os.environ.get("TZ", None) # save current tz if set
tz = "America/Los_Angeles"
os.environ["TZ"] = tz
time.tzset()
cls.sc.environment["TZ"] = tz
cls.spark.conf.set("spark.sql.session.timeZone", tz)
@classmethod
def tearDownClass(cls):
del os.environ["TZ"]
if cls.tz_prev is not None:
os.environ["TZ"] = cls.tz_prev
time.tzset()
ReusedSQLTestCase.tearDownClass()
if __name__ == "__main__":
from pyspark.testing import main
main()