blob: 208f9ae53898a2e60d69ebb49c1d26dc6b7bc2a4 [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import unittest
from pyspark.testing.connectutils import should_test_connect
from pyspark.sql.tests.test_udtf import (
BaseUDTFTestsMixin,
UDTFArrowTestsMixin,
LegacyUDTFArrowTestsMixin,
)
from pyspark.testing.connectutils import ReusedConnectTestCase
if should_test_connect:
from pyspark import sql
from pyspark.sql.connect.udtf import UserDefinedTableFunction
sql.udtf.UserDefinedTableFunction = UserDefinedTableFunction
from pyspark.sql.connect.functions import lit, udtf
from pyspark.errors.exceptions.connect import (
PickleException,
PythonException,
InvalidPlanInput,
)
class UDTFParityTests(BaseUDTFTestsMixin, ReusedConnectTestCase):
@classmethod
def setUpClass(cls):
super(UDTFParityTests, cls).setUpClass()
cls.spark.conf.set("spark.sql.execution.pythonUDTF.arrow.enabled", "false")
@classmethod
def tearDownClass(cls):
try:
cls.spark.conf.unset("spark.sql.execution.pythonUDTF.arrow.enabled")
finally:
super(UDTFParityTests, cls).tearDownClass()
def test_struct_output_type_casting_row(self):
self.check_struct_output_type_casting_row(PickleException)
def test_udtf_with_invalid_return_type(self):
@udtf(returnType="int")
class TestUDTF:
def eval(self, a: int):
yield a + 1,
with self.assertRaisesRegex(InvalidPlanInput, "Invalid.*type"):
TestUDTF(lit(1)).collect()
@unittest.skip("Spark Connect does not support broadcast but the test depends on it.")
def test_udtf_with_analyze_using_broadcast(self):
super().test_udtf_with_analyze_using_broadcast()
@unittest.skip("Spark Connect does not support accumulator but the test depends on it.")
def test_udtf_with_analyze_using_accumulator(self):
super().test_udtf_with_analyze_using_accumulator()
def test_udtf_with_analyze_using_archive(self):
super().check_udtf_with_analyze_using_archive(".")
def test_udtf_with_analyze_using_file(self):
super().check_udtf_with_analyze_using_file(".")
@unittest.skip("pyspark-connect can serialize SparkSession, but fails on executor")
def test_udtf_access_spark_session(self):
super().test_udtf_access_spark_session()
def _add_pyfile(self, path):
self.spark.addArtifacts(path, pyfile=True)
def _add_archive(self, path):
self.spark.addArtifacts(path, archive=True)
def _add_file(self, path):
self.spark.addArtifacts(path, file=True)
class LegacyArrowUDTFParityTests(LegacyUDTFArrowTestsMixin, UDTFParityTests):
@classmethod
def setUpClass(cls):
super(LegacyArrowUDTFParityTests, cls).setUpClass()
cls.spark.conf.set("spark.sql.execution.pythonUDTF.arrow.enabled", "true")
cls.spark.conf.set(
"spark.sql.legacy.execution.pythonUDTF.pandas.conversion.enabled", "true"
)
@classmethod
def tearDownClass(cls):
try:
cls.spark.conf.unset("spark.sql.execution.pythonUDTF.arrow.enabled")
cls.spark.conf.unset("spark.sql.legacy.execution.pythonUDTF.pandas.conversion.enabled")
finally:
super(LegacyArrowUDTFParityTests, cls).tearDownClass()
def test_udtf_access_spark_session_connect(self):
df = self.spark.range(10)
@udtf(returnType="x: int")
class TestUDTF:
def eval(self):
df.collect()
yield 1,
with self.assertRaisesRegex(PythonException, "NO_ACTIVE_SESSION"):
TestUDTF().collect()
@unittest.skipIf(
os.environ.get("SPARK_SKIP_CONNECT_COMPAT_TESTS") == "1",
"Python UDTF with Arrow is still under development.",
)
class ArrowUDTFParityTests(UDTFArrowTestsMixin, UDTFParityTests):
@classmethod
def setUpClass(cls):
super(ArrowUDTFParityTests, cls).setUpClass()
cls.spark.conf.set("spark.sql.execution.pythonUDTF.arrow.enabled", "true")
cls.spark.conf.set(
"spark.sql.legacy.execution.pythonUDTF.pandas.conversion.enabled", "false"
)
@classmethod
def tearDownClass(cls):
try:
cls.spark.conf.unset("spark.sql.execution.pythonUDTF.arrow.enabled")
cls.spark.conf.unset("spark.sql.legacy.execution.pythonUDTF.pandas.conversion.enabled")
finally:
super(ArrowUDTFParityTests, cls).tearDownClass()
def test_udtf_access_spark_session_connect(self):
df = self.spark.range(10)
@udtf(returnType="x: int")
class TestUDTF:
def eval(self):
df.collect()
yield 1,
with self.assertRaisesRegex(PythonException, "NO_ACTIVE_SESSION"):
TestUDTF().collect()
if __name__ == "__main__":
import unittest
from pyspark.sql.tests.connect.test_parity_udtf import * # noqa: F401
try:
import xmlrunner # type: ignore[import]
testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2)
except ImportError:
testRunner = None
unittest.main(testRunner=testRunner, verbosity=2)