| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| from typing import Optional, TYPE_CHECKING |
| |
| from pyspark.errors import PySparkValueError |
| from pyspark.sql.tvf import TableValuedFunction as PySparkTableValuedFunction |
| |
| if TYPE_CHECKING: |
| from pyspark.sql.connect.column import Column |
| from pyspark.sql.connect.dataframe import DataFrame |
| from pyspark.sql.connect.session import SparkSession |
| |
| |
| class TableValuedFunction: |
| __doc__ = PySparkTableValuedFunction.__doc__ |
| |
| def __init__(self, sparkSession: "SparkSession"): |
| self._sparkSession = sparkSession |
| |
| def range( |
| self, |
| start: int, |
| end: Optional[int] = None, |
| step: int = 1, |
| numPartitions: Optional[int] = None, |
| ) -> "DataFrame": |
| return self._sparkSession.range( # type: ignore[return-value] |
| start, end, step, numPartitions |
| ) |
| |
| range.__doc__ = PySparkTableValuedFunction.range.__doc__ |
| |
| def explode(self, collection: "Column") -> "DataFrame": |
| return self._fn("explode", collection) |
| |
| explode.__doc__ = PySparkTableValuedFunction.explode.__doc__ |
| |
| def explode_outer(self, collection: "Column") -> "DataFrame": |
| return self._fn("explode_outer", collection) |
| |
| explode_outer.__doc__ = PySparkTableValuedFunction.explode_outer.__doc__ |
| |
| def inline(self, input: "Column") -> "DataFrame": |
| return self._fn("inline", input) |
| |
| inline.__doc__ = PySparkTableValuedFunction.inline.__doc__ |
| |
| def inline_outer(self, input: "Column") -> "DataFrame": |
| return self._fn("inline_outer", input) |
| |
| inline_outer.__doc__ = PySparkTableValuedFunction.inline_outer.__doc__ |
| |
| def json_tuple(self, input: "Column", *fields: "Column") -> "DataFrame": |
| if len(fields) == 0: |
| raise PySparkValueError( |
| errorClass="CANNOT_BE_EMPTY", |
| messageParameters={"item": "field"}, |
| ) |
| return self._fn("json_tuple", input, *fields) |
| |
| json_tuple.__doc__ = PySparkTableValuedFunction.json_tuple.__doc__ |
| |
| def posexplode(self, collection: "Column") -> "DataFrame": |
| return self._fn("posexplode", collection) |
| |
| posexplode.__doc__ = PySparkTableValuedFunction.posexplode.__doc__ |
| |
| def posexplode_outer(self, collection: "Column") -> "DataFrame": |
| return self._fn("posexplode_outer", collection) |
| |
| posexplode_outer.__doc__ = PySparkTableValuedFunction.posexplode_outer.__doc__ |
| |
| def stack(self, n: "Column", *fields: "Column") -> "DataFrame": |
| return self._fn("stack", n, *fields) |
| |
| stack.__doc__ = PySparkTableValuedFunction.stack.__doc__ |
| |
| def collations(self) -> "DataFrame": |
| return self._fn("collations") |
| |
| collations.__doc__ = PySparkTableValuedFunction.collations.__doc__ |
| |
| def sql_keywords(self) -> "DataFrame": |
| return self._fn("sql_keywords") |
| |
| sql_keywords.__doc__ = PySparkTableValuedFunction.sql_keywords.__doc__ |
| |
| def variant_explode(self, input: "Column") -> "DataFrame": |
| return self._fn("variant_explode", input) |
| |
| variant_explode.__doc__ = PySparkTableValuedFunction.variant_explode.__doc__ |
| |
| def variant_explode_outer(self, input: "Column") -> "DataFrame": |
| return self._fn("variant_explode_outer", input) |
| |
| variant_explode_outer.__doc__ = PySparkTableValuedFunction.variant_explode_outer.__doc__ |
| |
| def _fn(self, name: str, *args: "Column") -> "DataFrame": |
| from pyspark.sql.connect.dataframe import DataFrame |
| from pyspark.sql.connect.plan import UnresolvedTableValuedFunction |
| from pyspark.sql.connect.functions.builtin import _to_col |
| |
| return DataFrame( |
| UnresolvedTableValuedFunction(name, [_to_col(arg) for arg in args]), self._sparkSession |
| ) |
| |
| |
| def _test() -> None: |
| import os |
| import sys |
| |
| if os.environ.get("PYTHON_GIL", "?") == "0": |
| print("Not supported in no-GIL mode", file=sys.stderr) |
| sys.exit(0) |
| |
| from pyspark.testing.utils import should_test_connect |
| |
| if not should_test_connect: |
| print("Skipping pyspark.sql.connect.tvf doctests", file=sys.stderr) |
| sys.exit(0) |
| |
| import doctest |
| from pyspark.sql import SparkSession as PySparkSession |
| import pyspark.sql.connect.tvf |
| |
| globs = pyspark.sql.connect.tvf.__dict__.copy() |
| |
| globs["spark"] = ( |
| PySparkSession.builder.appName("sql.connect.tvf tests") |
| .remote(os.environ.get("SPARK_CONNECT_TESTING_REMOTE", "local[4]")) |
| .getOrCreate() |
| ) |
| |
| (failure_count, test_count) = doctest.testmod( |
| pyspark.sql.connect.tvf, |
| globs=globs, |
| optionflags=doctest.ELLIPSIS |
| | doctest.NORMALIZE_WHITESPACE |
| | doctest.IGNORE_EXCEPTION_DETAIL, |
| ) |
| |
| globs["spark"].stop() |
| |
| if failure_count: |
| sys.exit(-1) |
| |
| |
| if __name__ == "__main__": |
| _test() |