blob: 156ef846a8d1042492fdc3067477db0b217c6be1 [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
@generated by mypy-protobuf. Do not edit manually!
isort:skip_file
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import builtins
import collections.abc
import google.protobuf.descriptor
import google.protobuf.internal.containers
import google.protobuf.message
import pyspark.sql.connect.proto.expressions_pb2
import pyspark.sql.connect.proto.ml_common_pb2
import pyspark.sql.connect.proto.relations_pb2
import sys
import typing
if sys.version_info >= (3, 8):
import typing as typing_extensions
else:
import typing_extensions
DESCRIPTOR: google.protobuf.descriptor.FileDescriptor
class MlCommand(google.protobuf.message.Message):
"""Command for ML"""
DESCRIPTOR: google.protobuf.descriptor.Descriptor
class Fit(google.protobuf.message.Message):
"""Command for estimator.fit(dataset)"""
DESCRIPTOR: google.protobuf.descriptor.Descriptor
ESTIMATOR_FIELD_NUMBER: builtins.int
PARAMS_FIELD_NUMBER: builtins.int
DATASET_FIELD_NUMBER: builtins.int
@property
def estimator(self) -> pyspark.sql.connect.proto.ml_common_pb2.MlOperator:
"""(Required) Estimator information (its type should be OPERATOR_TYPE_ESTIMATOR)"""
@property
def params(self) -> pyspark.sql.connect.proto.ml_common_pb2.MlParams:
"""(Optional) parameters of the Estimator"""
@property
def dataset(self) -> pyspark.sql.connect.proto.relations_pb2.Relation:
"""(Required) the training dataset"""
def __init__(
self,
*,
estimator: pyspark.sql.connect.proto.ml_common_pb2.MlOperator | None = ...,
params: pyspark.sql.connect.proto.ml_common_pb2.MlParams | None = ...,
dataset: pyspark.sql.connect.proto.relations_pb2.Relation | None = ...,
) -> None: ...
def HasField(
self,
field_name: typing_extensions.Literal[
"_params",
b"_params",
"dataset",
b"dataset",
"estimator",
b"estimator",
"params",
b"params",
],
) -> builtins.bool: ...
def ClearField(
self,
field_name: typing_extensions.Literal[
"_params",
b"_params",
"dataset",
b"dataset",
"estimator",
b"estimator",
"params",
b"params",
],
) -> None: ...
def WhichOneof(
self, oneof_group: typing_extensions.Literal["_params", b"_params"]
) -> typing_extensions.Literal["params"] | None: ...
class Delete(google.protobuf.message.Message):
"""Command to delete the cached objects which could be a model
or summary evaluated by a model
"""
DESCRIPTOR: google.protobuf.descriptor.Descriptor
OBJ_REFS_FIELD_NUMBER: builtins.int
EVICT_ONLY_FIELD_NUMBER: builtins.int
@property
def obj_refs(
self,
) -> google.protobuf.internal.containers.RepeatedCompositeFieldContainer[
pyspark.sql.connect.proto.ml_common_pb2.ObjectRef
]: ...
evict_only: builtins.bool
"""if set `evict_only` to true, only evict the cached model from memory,
but keep the offloaded model in Spark driver local disk.
"""
def __init__(
self,
*,
obj_refs: collections.abc.Iterable[pyspark.sql.connect.proto.ml_common_pb2.ObjectRef]
| None = ...,
evict_only: builtins.bool | None = ...,
) -> None: ...
def HasField(
self,
field_name: typing_extensions.Literal[
"_evict_only", b"_evict_only", "evict_only", b"evict_only"
],
) -> builtins.bool: ...
def ClearField(
self,
field_name: typing_extensions.Literal[
"_evict_only", b"_evict_only", "evict_only", b"evict_only", "obj_refs", b"obj_refs"
],
) -> None: ...
def WhichOneof(
self, oneof_group: typing_extensions.Literal["_evict_only", b"_evict_only"]
) -> typing_extensions.Literal["evict_only"] | None: ...
class CleanCache(google.protobuf.message.Message):
"""Force to clean up all the ML cached objects"""
DESCRIPTOR: google.protobuf.descriptor.Descriptor
def __init__(
self,
) -> None: ...
class GetCacheInfo(google.protobuf.message.Message):
"""Get the information of all the ML cached objects"""
DESCRIPTOR: google.protobuf.descriptor.Descriptor
def __init__(
self,
) -> None: ...
class Write(google.protobuf.message.Message):
"""Command to write ML operator"""
DESCRIPTOR: google.protobuf.descriptor.Descriptor
class OptionsEntry(google.protobuf.message.Message):
DESCRIPTOR: google.protobuf.descriptor.Descriptor
KEY_FIELD_NUMBER: builtins.int
VALUE_FIELD_NUMBER: builtins.int
key: builtins.str
value: builtins.str
def __init__(
self,
*,
key: builtins.str = ...,
value: builtins.str = ...,
) -> None: ...
def ClearField(
self, field_name: typing_extensions.Literal["key", b"key", "value", b"value"]
) -> None: ...
OPERATOR_FIELD_NUMBER: builtins.int
OBJ_REF_FIELD_NUMBER: builtins.int
PARAMS_FIELD_NUMBER: builtins.int
PATH_FIELD_NUMBER: builtins.int
SHOULD_OVERWRITE_FIELD_NUMBER: builtins.int
OPTIONS_FIELD_NUMBER: builtins.int
@property
def operator(self) -> pyspark.sql.connect.proto.ml_common_pb2.MlOperator:
"""Estimator or evaluator"""
@property
def obj_ref(self) -> pyspark.sql.connect.proto.ml_common_pb2.ObjectRef:
"""The cached model"""
@property
def params(self) -> pyspark.sql.connect.proto.ml_common_pb2.MlParams:
"""(Optional) The parameters of operator which could be estimator/evaluator or a cached model"""
path: builtins.str
"""(Required) Save the ML instance to the path"""
should_overwrite: builtins.bool
"""(Optional) Overwrites if the output path already exists."""
@property
def options(
self,
) -> google.protobuf.internal.containers.ScalarMap[builtins.str, builtins.str]:
"""(Optional) The options of the writer"""
def __init__(
self,
*,
operator: pyspark.sql.connect.proto.ml_common_pb2.MlOperator | None = ...,
obj_ref: pyspark.sql.connect.proto.ml_common_pb2.ObjectRef | None = ...,
params: pyspark.sql.connect.proto.ml_common_pb2.MlParams | None = ...,
path: builtins.str = ...,
should_overwrite: builtins.bool | None = ...,
options: collections.abc.Mapping[builtins.str, builtins.str] | None = ...,
) -> None: ...
def HasField(
self,
field_name: typing_extensions.Literal[
"_params",
b"_params",
"_should_overwrite",
b"_should_overwrite",
"obj_ref",
b"obj_ref",
"operator",
b"operator",
"params",
b"params",
"should_overwrite",
b"should_overwrite",
"type",
b"type",
],
) -> builtins.bool: ...
def ClearField(
self,
field_name: typing_extensions.Literal[
"_params",
b"_params",
"_should_overwrite",
b"_should_overwrite",
"obj_ref",
b"obj_ref",
"operator",
b"operator",
"options",
b"options",
"params",
b"params",
"path",
b"path",
"should_overwrite",
b"should_overwrite",
"type",
b"type",
],
) -> None: ...
@typing.overload
def WhichOneof(
self, oneof_group: typing_extensions.Literal["_params", b"_params"]
) -> typing_extensions.Literal["params"] | None: ...
@typing.overload
def WhichOneof(
self, oneof_group: typing_extensions.Literal["_should_overwrite", b"_should_overwrite"]
) -> typing_extensions.Literal["should_overwrite"] | None: ...
@typing.overload
def WhichOneof(
self, oneof_group: typing_extensions.Literal["type", b"type"]
) -> typing_extensions.Literal["operator", "obj_ref"] | None: ...
class Read(google.protobuf.message.Message):
"""Command to load ML operator."""
DESCRIPTOR: google.protobuf.descriptor.Descriptor
OPERATOR_FIELD_NUMBER: builtins.int
PATH_FIELD_NUMBER: builtins.int
@property
def operator(self) -> pyspark.sql.connect.proto.ml_common_pb2.MlOperator:
"""(Required) ML operator information"""
path: builtins.str
"""(Required) Load the ML instance from the input path"""
def __init__(
self,
*,
operator: pyspark.sql.connect.proto.ml_common_pb2.MlOperator | None = ...,
path: builtins.str = ...,
) -> None: ...
def HasField(
self, field_name: typing_extensions.Literal["operator", b"operator"]
) -> builtins.bool: ...
def ClearField(
self, field_name: typing_extensions.Literal["operator", b"operator", "path", b"path"]
) -> None: ...
class Evaluate(google.protobuf.message.Message):
"""Command for evaluator.evaluate(dataset)"""
DESCRIPTOR: google.protobuf.descriptor.Descriptor
EVALUATOR_FIELD_NUMBER: builtins.int
PARAMS_FIELD_NUMBER: builtins.int
DATASET_FIELD_NUMBER: builtins.int
@property
def evaluator(self) -> pyspark.sql.connect.proto.ml_common_pb2.MlOperator:
"""(Required) Evaluator information (its type should be OPERATOR_TYPE_EVALUATOR)"""
@property
def params(self) -> pyspark.sql.connect.proto.ml_common_pb2.MlParams:
"""(Optional) parameters of the Evaluator"""
@property
def dataset(self) -> pyspark.sql.connect.proto.relations_pb2.Relation:
"""(Required) the evaluating dataset"""
def __init__(
self,
*,
evaluator: pyspark.sql.connect.proto.ml_common_pb2.MlOperator | None = ...,
params: pyspark.sql.connect.proto.ml_common_pb2.MlParams | None = ...,
dataset: pyspark.sql.connect.proto.relations_pb2.Relation | None = ...,
) -> None: ...
def HasField(
self,
field_name: typing_extensions.Literal[
"_params",
b"_params",
"dataset",
b"dataset",
"evaluator",
b"evaluator",
"params",
b"params",
],
) -> builtins.bool: ...
def ClearField(
self,
field_name: typing_extensions.Literal[
"_params",
b"_params",
"dataset",
b"dataset",
"evaluator",
b"evaluator",
"params",
b"params",
],
) -> None: ...
def WhichOneof(
self, oneof_group: typing_extensions.Literal["_params", b"_params"]
) -> typing_extensions.Literal["params"] | None: ...
class CreateSummary(google.protobuf.message.Message):
"""This is for re-creating the model summary when the model summary is lost
(model summary is lost when the model is offloaded and then loaded back)
"""
DESCRIPTOR: google.protobuf.descriptor.Descriptor
MODEL_REF_FIELD_NUMBER: builtins.int
DATASET_FIELD_NUMBER: builtins.int
@property
def model_ref(self) -> pyspark.sql.connect.proto.ml_common_pb2.ObjectRef: ...
@property
def dataset(self) -> pyspark.sql.connect.proto.relations_pb2.Relation: ...
def __init__(
self,
*,
model_ref: pyspark.sql.connect.proto.ml_common_pb2.ObjectRef | None = ...,
dataset: pyspark.sql.connect.proto.relations_pb2.Relation | None = ...,
) -> None: ...
def HasField(
self,
field_name: typing_extensions.Literal["dataset", b"dataset", "model_ref", b"model_ref"],
) -> builtins.bool: ...
def ClearField(
self,
field_name: typing_extensions.Literal["dataset", b"dataset", "model_ref", b"model_ref"],
) -> None: ...
class GetModelSize(google.protobuf.message.Message):
"""This is for query the model estimated in-memory size"""
DESCRIPTOR: google.protobuf.descriptor.Descriptor
MODEL_REF_FIELD_NUMBER: builtins.int
@property
def model_ref(self) -> pyspark.sql.connect.proto.ml_common_pb2.ObjectRef: ...
def __init__(
self,
*,
model_ref: pyspark.sql.connect.proto.ml_common_pb2.ObjectRef | None = ...,
) -> None: ...
def HasField(
self, field_name: typing_extensions.Literal["model_ref", b"model_ref"]
) -> builtins.bool: ...
def ClearField(
self, field_name: typing_extensions.Literal["model_ref", b"model_ref"]
) -> None: ...
FIT_FIELD_NUMBER: builtins.int
FETCH_FIELD_NUMBER: builtins.int
DELETE_FIELD_NUMBER: builtins.int
WRITE_FIELD_NUMBER: builtins.int
READ_FIELD_NUMBER: builtins.int
EVALUATE_FIELD_NUMBER: builtins.int
CLEAN_CACHE_FIELD_NUMBER: builtins.int
GET_CACHE_INFO_FIELD_NUMBER: builtins.int
CREATE_SUMMARY_FIELD_NUMBER: builtins.int
GET_MODEL_SIZE_FIELD_NUMBER: builtins.int
@property
def fit(self) -> global___MlCommand.Fit: ...
@property
def fetch(self) -> pyspark.sql.connect.proto.relations_pb2.Fetch: ...
@property
def delete(self) -> global___MlCommand.Delete: ...
@property
def write(self) -> global___MlCommand.Write: ...
@property
def read(self) -> global___MlCommand.Read: ...
@property
def evaluate(self) -> global___MlCommand.Evaluate: ...
@property
def clean_cache(self) -> global___MlCommand.CleanCache: ...
@property
def get_cache_info(self) -> global___MlCommand.GetCacheInfo: ...
@property
def create_summary(self) -> global___MlCommand.CreateSummary: ...
@property
def get_model_size(self) -> global___MlCommand.GetModelSize: ...
def __init__(
self,
*,
fit: global___MlCommand.Fit | None = ...,
fetch: pyspark.sql.connect.proto.relations_pb2.Fetch | None = ...,
delete: global___MlCommand.Delete | None = ...,
write: global___MlCommand.Write | None = ...,
read: global___MlCommand.Read | None = ...,
evaluate: global___MlCommand.Evaluate | None = ...,
clean_cache: global___MlCommand.CleanCache | None = ...,
get_cache_info: global___MlCommand.GetCacheInfo | None = ...,
create_summary: global___MlCommand.CreateSummary | None = ...,
get_model_size: global___MlCommand.GetModelSize | None = ...,
) -> None: ...
def HasField(
self,
field_name: typing_extensions.Literal[
"clean_cache",
b"clean_cache",
"command",
b"command",
"create_summary",
b"create_summary",
"delete",
b"delete",
"evaluate",
b"evaluate",
"fetch",
b"fetch",
"fit",
b"fit",
"get_cache_info",
b"get_cache_info",
"get_model_size",
b"get_model_size",
"read",
b"read",
"write",
b"write",
],
) -> builtins.bool: ...
def ClearField(
self,
field_name: typing_extensions.Literal[
"clean_cache",
b"clean_cache",
"command",
b"command",
"create_summary",
b"create_summary",
"delete",
b"delete",
"evaluate",
b"evaluate",
"fetch",
b"fetch",
"fit",
b"fit",
"get_cache_info",
b"get_cache_info",
"get_model_size",
b"get_model_size",
"read",
b"read",
"write",
b"write",
],
) -> None: ...
def WhichOneof(
self, oneof_group: typing_extensions.Literal["command", b"command"]
) -> (
typing_extensions.Literal[
"fit",
"fetch",
"delete",
"write",
"read",
"evaluate",
"clean_cache",
"get_cache_info",
"create_summary",
"get_model_size",
]
| None
): ...
global___MlCommand = MlCommand
class MlCommandResult(google.protobuf.message.Message):
"""The result of MlCommand"""
DESCRIPTOR: google.protobuf.descriptor.Descriptor
class MlOperatorInfo(google.protobuf.message.Message):
"""Represents an operator info"""
DESCRIPTOR: google.protobuf.descriptor.Descriptor
OBJ_REF_FIELD_NUMBER: builtins.int
NAME_FIELD_NUMBER: builtins.int
UID_FIELD_NUMBER: builtins.int
PARAMS_FIELD_NUMBER: builtins.int
WARNING_MESSAGE_FIELD_NUMBER: builtins.int
@property
def obj_ref(self) -> pyspark.sql.connect.proto.ml_common_pb2.ObjectRef:
"""The cached object which could be a model or summary evaluated by a model"""
name: builtins.str
"""Operator name"""
uid: builtins.str
"""(Optional) the 'uid' of a ML object
Note it is different from the 'id' of a cached object.
"""
@property
def params(self) -> pyspark.sql.connect.proto.ml_common_pb2.MlParams:
"""(Optional) parameters"""
warning_message: builtins.str
"""(Optional) warning message generated during the ML command execution"""
def __init__(
self,
*,
obj_ref: pyspark.sql.connect.proto.ml_common_pb2.ObjectRef | None = ...,
name: builtins.str = ...,
uid: builtins.str | None = ...,
params: pyspark.sql.connect.proto.ml_common_pb2.MlParams | None = ...,
warning_message: builtins.str | None = ...,
) -> None: ...
def HasField(
self,
field_name: typing_extensions.Literal[
"_params",
b"_params",
"_uid",
b"_uid",
"_warning_message",
b"_warning_message",
"name",
b"name",
"obj_ref",
b"obj_ref",
"params",
b"params",
"type",
b"type",
"uid",
b"uid",
"warning_message",
b"warning_message",
],
) -> builtins.bool: ...
def ClearField(
self,
field_name: typing_extensions.Literal[
"_params",
b"_params",
"_uid",
b"_uid",
"_warning_message",
b"_warning_message",
"name",
b"name",
"obj_ref",
b"obj_ref",
"params",
b"params",
"type",
b"type",
"uid",
b"uid",
"warning_message",
b"warning_message",
],
) -> None: ...
@typing.overload
def WhichOneof(
self, oneof_group: typing_extensions.Literal["_params", b"_params"]
) -> typing_extensions.Literal["params"] | None: ...
@typing.overload
def WhichOneof(
self, oneof_group: typing_extensions.Literal["_uid", b"_uid"]
) -> typing_extensions.Literal["uid"] | None: ...
@typing.overload
def WhichOneof(
self, oneof_group: typing_extensions.Literal["_warning_message", b"_warning_message"]
) -> typing_extensions.Literal["warning_message"] | None: ...
@typing.overload
def WhichOneof(
self, oneof_group: typing_extensions.Literal["type", b"type"]
) -> typing_extensions.Literal["obj_ref", "name"] | None: ...
PARAM_FIELD_NUMBER: builtins.int
SUMMARY_FIELD_NUMBER: builtins.int
OPERATOR_INFO_FIELD_NUMBER: builtins.int
@property
def param(self) -> pyspark.sql.connect.proto.expressions_pb2.Expression.Literal:
"""The result of the attribute"""
summary: builtins.str
"""Evaluate a Dataset in a model and return the cached ID of summary"""
@property
def operator_info(self) -> global___MlCommandResult.MlOperatorInfo:
"""Operator information"""
def __init__(
self,
*,
param: pyspark.sql.connect.proto.expressions_pb2.Expression.Literal | None = ...,
summary: builtins.str = ...,
operator_info: global___MlCommandResult.MlOperatorInfo | None = ...,
) -> None: ...
def HasField(
self,
field_name: typing_extensions.Literal[
"operator_info",
b"operator_info",
"param",
b"param",
"result_type",
b"result_type",
"summary",
b"summary",
],
) -> builtins.bool: ...
def ClearField(
self,
field_name: typing_extensions.Literal[
"operator_info",
b"operator_info",
"param",
b"param",
"result_type",
b"result_type",
"summary",
b"summary",
],
) -> None: ...
def WhichOneof(
self, oneof_group: typing_extensions.Literal["result_type", b"result_type"]
) -> typing_extensions.Literal["param", "summary", "operator_info"] | None: ...
global___MlCommandResult = MlCommandResult