| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| from pyspark.sql.connect.utils import check_dependencies |
| |
| check_dependencies(__name__) |
| |
| from typing import Union, TYPE_CHECKING |
| |
| from pyspark.errors import PySparkTypeError |
| from pyspark.sql import functions as pysparkfuncs |
| from pyspark.sql.column import Column |
| from pyspark.sql.connect.functions.builtin import _to_col, _invoke_function_over_columns |
| from pyspark.sql.connect.functions.builtin import lit, _invoke_function |
| |
| |
| if TYPE_CHECKING: |
| from pyspark.sql.connect._typing import ColumnOrName |
| |
| |
| def bucket(numBuckets: Union[Column, int], col: "ColumnOrName") -> Column: |
| if isinstance(numBuckets, int): |
| _numBuckets = lit(numBuckets) |
| elif isinstance(numBuckets, Column): |
| _numBuckets = numBuckets |
| else: |
| raise PySparkTypeError( |
| errorClass="NOT_COLUMN_OR_INT", |
| messageParameters={ |
| "arg_name": "numBuckets", |
| "arg_type": type(numBuckets).__name__, |
| }, |
| ) |
| |
| return _invoke_function("bucket", _numBuckets, _to_col(col)) |
| |
| |
| bucket.__doc__ = pysparkfuncs.partitioning.bucket.__doc__ |
| |
| |
| def years(col: "ColumnOrName") -> Column: |
| return _invoke_function_over_columns("years", col) |
| |
| |
| years.__doc__ = pysparkfuncs.partitioning.years.__doc__ |
| |
| |
| def months(col: "ColumnOrName") -> Column: |
| return _invoke_function_over_columns("months", col) |
| |
| |
| months.__doc__ = pysparkfuncs.partitioning.months.__doc__ |
| |
| |
| def days(col: "ColumnOrName") -> Column: |
| return _invoke_function_over_columns("days", col) |
| |
| |
| days.__doc__ = pysparkfuncs.partitioning.days.__doc__ |
| |
| |
| def hours(col: "ColumnOrName") -> Column: |
| return _invoke_function_over_columns("hours", col) |
| |
| |
| hours.__doc__ = pysparkfuncs.partitioning.hours.__doc__ |
| |
| |
| def _test() -> None: |
| import sys |
| import os |
| import doctest |
| from pyspark.sql import SparkSession as PySparkSession |
| import pyspark.sql.connect.functions.partitioning |
| |
| globs = pyspark.sql.connect.functions.partitioning.__dict__.copy() |
| |
| globs["spark"] = ( |
| PySparkSession.builder.appName("sql.connect.functions tests") |
| .remote(os.environ.get("SPARK_CONNECT_TESTING_REMOTE", "local[4]")) |
| .getOrCreate() |
| ) |
| |
| (failure_count, test_count) = doctest.testmod( |
| pyspark.sql.connect.functions.partitioning, |
| globs=globs, |
| optionflags=doctest.ELLIPSIS |
| | doctest.NORMALIZE_WHITESPACE |
| | doctest.IGNORE_EXCEPTION_DETAIL, |
| ) |
| |
| globs["spark"].stop() |
| |
| if failure_count: |
| sys.exit(-1) |
| |
| |
| if __name__ == "__main__": |
| _test() |