| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| from types import FunctionType |
| from typing import Any, Callable, Iterable, Union, Optional, NewType, Protocol, Tuple |
| import datetime |
| import decimal |
| |
| import pyarrow |
| from pandas.core.frame import DataFrame as PandasDataFrame |
| |
| from pyspark.sql.column import Column |
| from pyspark.sql.connect.types import DataType |
| from pyspark.sql.streaming.state import GroupState |
| |
| |
| ColumnOrName = Union[Column, str] |
| |
| ColumnOrNameOrOrdinal = Union[Column, str, int] |
| |
| PrimitiveType = Union[bool, float, int, str] |
| |
| OptionalPrimitiveType = Optional[PrimitiveType] |
| |
| LiteralType = PrimitiveType |
| |
| DecimalLiteral = decimal.Decimal |
| |
| DateTimeLiteral = Union[datetime.datetime, datetime.date] |
| |
| DataTypeOrString = Union[DataType, str] |
| |
| DataFrameLike = PandasDataFrame |
| |
| PandasMapIterFunction = Callable[[Iterable[DataFrameLike]], Iterable[DataFrameLike]] |
| |
| ArrowMapIterFunction = Callable[[Iterable[pyarrow.RecordBatch]], Iterable[pyarrow.RecordBatch]] |
| |
| PandasGroupedMapFunction = Union[ |
| Callable[[DataFrameLike], DataFrameLike], |
| Callable[[Any, DataFrameLike], DataFrameLike], |
| ] |
| |
| GroupedMapPandasUserDefinedFunction = NewType("GroupedMapPandasUserDefinedFunction", FunctionType) |
| |
| PandasCogroupedMapFunction = Callable[[DataFrameLike, DataFrameLike], DataFrameLike] |
| |
| PandasGroupedMapFunctionWithState = Callable[ |
| [Any, Iterable[DataFrameLike], GroupState], Iterable[DataFrameLike] |
| ] |
| ArrowGroupedMapFunction = Union[ |
| Callable[[pyarrow.Table], pyarrow.Table], |
| Callable[[Tuple[pyarrow.Scalar, ...], pyarrow.Table], pyarrow.Table], |
| ] |
| ArrowCogroupedMapFunction = Union[ |
| Callable[[pyarrow.Table, pyarrow.Table], pyarrow.Table], |
| Callable[[Tuple[pyarrow.Scalar, ...], pyarrow.Table, pyarrow.Table], pyarrow.Table], |
| ] |
| |
| |
| class UserDefinedFunctionLike(Protocol): |
| func: Callable[..., Any] |
| evalType: int |
| deterministic: bool |
| |
| @property |
| def returnType(self) -> DataType: |
| ... |
| |
| def __call__(self, *args: ColumnOrName) -> Column: |
| ... |
| |
| def asNondeterministic(self) -> "UserDefinedFunctionLike": |
| ... |
| |
| |
| class UserDefinedFunctionCallable(Protocol): |
| def __call__(self, *_: ColumnOrName) -> Column: |
| ... |