| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| import sys |
| from typing import Any, Dict, Optional, Union, TYPE_CHECKING |
| |
| from pyspark import _NoValue |
| from pyspark._globals import _NoValueType |
| from pyspark.errors import PySparkTypeError |
| |
| if TYPE_CHECKING: |
| from py4j.java_gateway import JavaObject |
| |
| |
| class RuntimeConfig: |
| """User-facing configuration API, accessible through `SparkSession.conf`. |
| |
| Options set here are automatically propagated to the Hadoop configuration during I/O. |
| |
| .. versionchanged:: 3.4.0 |
| Supports Spark Connect. |
| """ |
| |
| def __init__(self, jconf: "JavaObject") -> None: |
| """Create a new RuntimeConfig that wraps the underlying JVM object.""" |
| self._jconf = jconf |
| |
| def set(self, key: str, value: Union[str, int, bool]) -> None: |
| """ |
| Sets the given Spark runtime configuration property. |
| |
| .. versionadded:: 2.0.0 |
| |
| Parameters |
| ---------- |
| key : str |
| key of the configuration to set. |
| value : str, int, or bool |
| value of the configuration to set. |
| |
| Examples |
| -------- |
| >>> spark.conf.set("key1", "value1") |
| """ |
| self._jconf.set(key, value) |
| |
| def get( |
| self, key: str, default: Union[Optional[str], _NoValueType] = _NoValue |
| ) -> Optional[str]: |
| """ |
| Returns the value of Spark runtime configuration property for the given key, |
| assuming it is set. |
| |
| .. versionadded:: 2.0.0 |
| |
| Parameters |
| ---------- |
| key : str |
| key of the configuration to get. |
| default : str, optional |
| value of the configuration to get if the key does not exist. |
| |
| Returns |
| ------- |
| The string value of the configuration set, or None. |
| |
| Examples |
| -------- |
| >>> spark.conf.get("non-existent-key", "my_default") |
| 'my_default' |
| >>> spark.conf.set("my_key", "my_value") |
| >>> spark.conf.get("my_key") |
| 'my_value' |
| """ |
| self._check_type(key, "key") |
| if default is _NoValue: |
| return self._jconf.get(key) |
| else: |
| if default is not None: |
| self._check_type(default, "default") |
| return self._jconf.get(key, default) |
| |
| @property |
| def getAll(self) -> Dict[str, str]: |
| """ |
| Returns all properties set in this conf. |
| |
| .. versionadded:: 4.0.0 |
| |
| Returns |
| ------- |
| dict |
| A dictionary containing all properties set in this conf. |
| """ |
| return dict(self._jconf.getAllAsJava()) |
| |
| def unset(self, key: str) -> None: |
| """ |
| Resets the configuration property for the given key. |
| |
| .. versionadded:: 2.0.0 |
| |
| Parameters |
| ---------- |
| key : str |
| key of the configuration to unset. |
| |
| Examples |
| -------- |
| >>> spark.conf.set("my_key", "my_value") |
| >>> spark.conf.get("my_key") |
| 'my_value' |
| >>> spark.conf.unset("my_key") |
| >>> spark.conf.get("my_key") |
| Traceback (most recent call last): |
| ... |
| pyspark...SparkNoSuchElementException: ... The SQL config "my_key" cannot be found... |
| """ |
| self._jconf.unset(key) |
| |
| def _check_type(self, obj: Any, identifier: str) -> None: |
| """Assert that an object is of type str.""" |
| if not isinstance(obj, str): |
| raise PySparkTypeError( |
| errorClass="NOT_STR", |
| messageParameters={ |
| "arg_name": identifier, |
| "arg_type": type(obj).__name__, |
| }, |
| ) |
| |
| def isModifiable(self, key: str) -> bool: |
| """Indicates whether the configuration property with the given key |
| is modifiable in the current session. |
| |
| .. versionadded:: 2.4.0 |
| """ |
| return self._jconf.isModifiable(key) |
| |
| |
| def _test() -> None: |
| import os |
| import doctest |
| from pyspark.sql.session import SparkSession |
| import pyspark.sql.conf |
| |
| os.chdir(os.environ["SPARK_HOME"]) |
| |
| globs = pyspark.sql.conf.__dict__.copy() |
| spark = SparkSession.builder.master("local[4]").appName("sql.conf tests").getOrCreate() |
| globs["spark"] = spark |
| (failure_count, test_count) = doctest.testmod( |
| pyspark.sql.conf, globs=globs, optionflags=doctest.ELLIPSIS |
| ) |
| spark.stop() |
| if failure_count: |
| sys.exit(-1) |
| |
| |
| if __name__ == "__main__": |
| _test() |