blob: 7499e2f821ae1beabf3cdb3b85217b5211496659 [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import numpy as np
import pandas as pd
import pyspark.pandas as ps
from pyspark.testing.pandasutils import PandasOnSparkTestCase, TestUtils
class GroupByRollingCountMixin:
def test_groupby_rolling_count(self):
pser = pd.Series([1, 2, 3, 2], index=np.random.rand(4), name="a")
psser = ps.from_pandas(pser)
# TODO(SPARK-43432): Fix `min_periods` for Rolling.count() to work same as pandas
self.assert_eq(
psser.groupby(psser).rolling(2).count().sort_index(),
pser.groupby(pser).rolling(2, min_periods=1).count().sort_index(),
)
self.assert_eq(
psser.groupby(psser).rolling(2).count().sum(),
pser.groupby(pser).rolling(2, min_periods=1).count().sum(),
)
# Multiindex
pser = pd.Series(
[1, 2, 3, 2],
index=pd.MultiIndex.from_tuples([("a", "x"), ("a", "y"), ("b", "z"), ("c", "z")]),
name="a",
)
psser = ps.from_pandas(pser)
self.assert_eq(
psser.groupby(psser).rolling(2).count().sort_index(),
pser.groupby(pser).rolling(2, min_periods=1).count().sort_index(),
)
pdf = pd.DataFrame({"a": [1.0, 2.0, 3.0, 2.0], "b": [4.0, 2.0, 3.0, 1.0]})
psdf = ps.from_pandas(pdf)
self.assert_eq(
psdf.groupby(psdf.a).rolling(2).count().sort_index(),
pdf.groupby(pdf.a).rolling(2, min_periods=1).count().sort_index(),
)
self.assert_eq(
psdf.groupby(psdf.a).rolling(2).count().sum(),
pdf.groupby(pdf.a).rolling(2, min_periods=1).count().sum(),
)
self.assert_eq(
psdf.groupby(psdf.a + 1).rolling(2).count().sort_index(),
pdf.groupby(pdf.a + 1).rolling(2, min_periods=1).count().sort_index(),
)
self.assert_eq(
psdf.b.groupby(psdf.a).rolling(2).count().sort_index(),
pdf.b.groupby(pdf.a).rolling(2, min_periods=1).count().sort_index(),
)
self.assert_eq(
psdf.groupby(psdf.a)["b"].rolling(2).count().sort_index(),
pdf.groupby(pdf.a)["b"].rolling(2, min_periods=1).count().sort_index(),
)
self.assert_eq(
psdf.groupby(psdf.a)[["b"]].rolling(2).count().sort_index(),
pdf.groupby(pdf.a)[["b"]].rolling(2, min_periods=1).count().sort_index(),
)
# Multiindex column
columns = pd.MultiIndex.from_tuples([("a", "x"), ("a", "y")])
pdf.columns = columns
psdf.columns = columns
self.assert_eq(
psdf.groupby(("a", "x")).rolling(2).count().sort_index(),
pdf.groupby(("a", "x")).rolling(2, min_periods=1).count().sort_index(),
)
self.assert_eq(
psdf.groupby([("a", "x"), ("a", "y")]).rolling(2).count().sort_index(),
pdf.groupby([("a", "x"), ("a", "y")]).rolling(2, min_periods=1).count().sort_index(),
)
class GroupByRollingCountTests(
GroupByRollingCountMixin,
PandasOnSparkTestCase,
TestUtils,
):
pass
if __name__ == "__main__":
import unittest
from pyspark.pandas.tests.window.test_groupby_rolling_count import * # noqa: F401
try:
import xmlrunner
testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2)
except ImportError:
testRunner = None
unittest.main(testRunner=testRunner, verbosity=2)