| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| import os |
| |
| import pandas as pd |
| |
| from pyspark import pandas as ps |
| from pyspark.testing.pandasutils import PandasOnSparkTestCase, TestUtils |
| from pyspark.testing.sqlutils import SQLTestUtils |
| |
| |
| class SparkFrameMethodsTestsMixin: |
| def test_frame_apply_negative(self): |
| with self.assertRaisesRegex( |
| ValueError, "The output of the function.* pyspark.sql.DataFrame.*int" |
| ): |
| ps.range(10).spark.apply(lambda scol: 1) |
| |
| def test_hint(self): |
| pdf1 = pd.DataFrame( |
| {"lkey": ["foo", "bar", "baz", "foo"], "value": [1, 2, 3, 5]} |
| ).set_index("lkey") |
| pdf2 = pd.DataFrame( |
| {"rkey": ["foo", "bar", "baz", "foo"], "value": [5, 6, 7, 8]} |
| ).set_index("rkey") |
| psdf1 = ps.from_pandas(pdf1) |
| psdf2 = ps.from_pandas(pdf2) |
| |
| hints = ["broadcast", "merge", "shuffle_hash", "shuffle_replicate_nl"] |
| |
| for hint in hints: |
| self.assert_eq( |
| pdf1.merge(pdf2, left_index=True, right_index=True).sort_values( |
| ["value_x", "value_y"] |
| ), |
| psdf1.merge(psdf2.spark.hint(hint), left_index=True, right_index=True).sort_values( |
| ["value_x", "value_y"] |
| ), |
| almost=True, |
| ) |
| self.assert_eq( |
| pdf1.merge(pdf2 + 1, left_index=True, right_index=True).sort_values( |
| ["value_x", "value_y"] |
| ), |
| psdf1.merge( |
| (psdf2 + 1).spark.hint(hint), left_index=True, right_index=True |
| ).sort_values(["value_x", "value_y"]), |
| almost=True, |
| ) |
| |
| def test_repartition(self): |
| psdf = ps.DataFrame({"age": [5, 5, 2, 2], "name": ["Bob", "Bob", "Alice", "Alice"]}) |
| num_partitions = psdf.to_spark().rdd.getNumPartitions() + 1 |
| |
| num_partitions += 1 |
| new_psdf = psdf.spark.repartition(num_partitions) |
| self.assertEqual(new_psdf.to_spark().rdd.getNumPartitions(), num_partitions) |
| self.assert_eq(psdf.sort_index(), new_psdf.sort_index()) |
| |
| # Reserves Index |
| psdf = psdf.set_index("age") |
| num_partitions += 1 |
| new_psdf = psdf.spark.repartition(num_partitions) |
| self.assertEqual(new_psdf.to_spark().rdd.getNumPartitions(), num_partitions) |
| self.assert_eq(psdf.sort_index(), new_psdf.sort_index()) |
| |
| # Reflects internal changes |
| psdf = psdf.reset_index() |
| psdf = psdf.set_index("name") |
| psdf2 = psdf + 1 |
| num_partitions += 1 |
| self.assert_eq( |
| psdf2.sort_index(), (psdf + 1).spark.repartition(num_partitions).sort_index() |
| ) |
| |
| # Reserves MultiIndex |
| psdf = ps.DataFrame({"a": ["a", "b", "c"]}, index=[[1, 2, 3], [4, 5, 6]]) |
| num_partitions = psdf.to_spark().rdd.getNumPartitions() + 1 |
| new_psdf = psdf.spark.repartition(num_partitions) |
| self.assertEqual(new_psdf.to_spark().rdd.getNumPartitions(), num_partitions) |
| self.assert_eq(psdf.sort_index(), new_psdf.sort_index()) |
| |
| def test_coalesce(self): |
| num_partitions = 10 |
| psdf = ps.DataFrame({"age": [5, 5, 2, 2], "name": ["Bob", "Bob", "Alice", "Alice"]}) |
| psdf = psdf.spark.repartition(num_partitions) |
| |
| num_partitions -= 1 |
| new_psdf = psdf.spark.coalesce(num_partitions) |
| self.assertEqual(new_psdf.to_spark().rdd.getNumPartitions(), num_partitions) |
| self.assert_eq(psdf.sort_index(), new_psdf.sort_index()) |
| |
| # Reserves Index |
| psdf = psdf.set_index("age") |
| num_partitions -= 1 |
| new_psdf = psdf.spark.coalesce(num_partitions) |
| self.assertEqual(new_psdf.to_spark().rdd.getNumPartitions(), num_partitions) |
| self.assert_eq(psdf.sort_index(), new_psdf.sort_index()) |
| |
| # Reflects internal changes |
| psdf = psdf.reset_index() |
| psdf = psdf.set_index("name") |
| psdf2 = psdf + 1 |
| num_partitions -= 1 |
| self.assert_eq(psdf2.sort_index(), (psdf + 1).spark.coalesce(num_partitions).sort_index()) |
| |
| # Reserves MultiIndex |
| psdf = ps.DataFrame({"a": ["a", "b", "c"]}, index=[[1, 2, 3], [4, 5, 6]]) |
| num_partitions -= 1 |
| psdf = psdf.spark.repartition(num_partitions) |
| |
| num_partitions -= 1 |
| new_psdf = psdf.spark.coalesce(num_partitions) |
| self.assertEqual(new_psdf.to_spark().rdd.getNumPartitions(), num_partitions) |
| self.assert_eq(psdf.sort_index(), new_psdf.sort_index()) |
| |
| def test_checkpoint(self): |
| with self.temp_dir() as tmp: |
| self.spark.sparkContext.setCheckpointDir(tmp) |
| psdf = ps.DataFrame({"a": ["a", "b", "c"]}) |
| new_psdf = psdf.spark.checkpoint() |
| self.assertIsNotNone(os.listdir(tmp)) |
| self.assert_eq(psdf, new_psdf) |
| |
| def test_local_checkpoint(self): |
| psdf = ps.DataFrame({"a": ["a", "b", "c"]}) |
| new_psdf = psdf.spark.local_checkpoint() |
| self.assert_eq(psdf, new_psdf) |
| |
| |
| class SparkFrameMethodsTests( |
| SparkFrameMethodsTestsMixin, PandasOnSparkTestCase, SQLTestUtils, TestUtils |
| ): |
| pass |
| |
| |
| if __name__ == "__main__": |
| import unittest |
| from pyspark.pandas.tests.test_frame_spark import * # noqa: F401 |
| |
| try: |
| import xmlrunner |
| |
| testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) |
| except ImportError: |
| testRunner = None |
| unittest.main(testRunner=testRunner, verbosity=2) |