blob: f983aabcee6b4c6428a2507cf908316d437055f1 [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import unittest
import pandas as pd
from pyspark import pandas as ps
from pyspark.testing.pandasutils import PandasOnSparkTestCase
from pyspark.testing.sqlutils import SQLTestUtils
class UniqueMixin:
@property
def pdf(self):
return pd.DataFrame(
{"a": [1, 2, 3, 4, 5, 6, 7, 8, 9], "b": [4, 5, 6, 3, 2, 1, 0, 0, 0]},
index=[0, 1, 3, 5, 6, 8, 9, 9, 9],
)
@property
def psdf(self):
return ps.from_pandas(self.pdf)
def test_index_unique(self):
psidx = self.psdf.index
# here the output is different than pandas in terms of order
expected = [0, 1, 3, 5, 6, 8, 9]
self.assert_eq(expected, sorted(psidx.unique()._to_pandas()))
self.assert_eq(expected, sorted(psidx.unique(level=0)._to_pandas()))
expected = [1, 2, 4, 6, 7, 9, 10]
self.assert_eq(expected, sorted((psidx + 1).unique()._to_pandas()))
with self.assertRaisesRegex(IndexError, "Too many levels*"):
psidx.unique(level=1)
with self.assertRaisesRegex(KeyError, "Requested level (hi)*"):
psidx.unique(level="hi")
def test_unique(self):
pidx = pd.Index(["a", "b", "a"])
psidx = ps.from_pandas(pidx)
self.assert_eq(psidx.unique().sort_values(), pidx.unique().sort_values())
self.assert_eq(psidx.unique().sort_values(), pidx.unique().sort_values())
pmidx = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("x", "a")])
psmidx = ps.from_pandas(pmidx)
self.assert_eq(psmidx.unique().sort_values(), pmidx.unique().sort_values())
self.assert_eq(psmidx.unique().sort_values(), pmidx.unique().sort_values())
with self.assertRaisesRegex(
IndexError, "Too many levels: Index has only 1 level, -2 is not a valid level number"
):
psidx.unique(level=-2)
def test_index_is_unique(self):
indexes = [("a", "b", "c"), ("a", "a", "c"), (1, 3, 3), (1, 2, 3)]
names = [None, "ks", "ks", None]
is_uniq = [True, False, False, True]
for idx, name, expected in zip(indexes, names, is_uniq):
pdf = pd.DataFrame({"a": [1, 2, 3]}, index=pd.Index(idx, name=name))
psdf = ps.from_pandas(pdf)
self.assertEqual(psdf.index.is_unique, expected)
def test_multiindex_is_unique(self):
indexes = [
[list("abc"), list("edf")],
[list("aac"), list("edf")],
[list("aac"), list("eef")],
[[1, 4, 4], [4, 6, 6]],
]
is_uniq = [True, True, False, False]
for idx, expected in zip(indexes, is_uniq):
pdf = pd.DataFrame({"a": [1, 2, 3]}, index=idx)
psdf = ps.from_pandas(pdf)
self.assertEqual(psdf.index.is_unique, expected)
def test_index_nunique(self):
pidx = pd.Index([1, 1, 2, None])
psidx = ps.from_pandas(pidx)
self.assert_eq(pidx.nunique(), psidx.nunique())
self.assert_eq(pidx.nunique(dropna=True), psidx.nunique(dropna=True))
def test_multiindex_nunique(self):
psidx = ps.MultiIndex.from_tuples([("a", "x", 1), ("b", "y", 2), ("c", "z", 3)])
with self.assertRaisesRegex(NotImplementedError, "notna is not defined for MultiIndex"):
psidx.notnull()
def test_multi_index_nunique(self):
tuples = [(1, "red"), (1, "blue"), (2, "red"), (2, "green")]
pmidx = pd.MultiIndex.from_tuples(tuples)
psmidx = ps.from_pandas(pmidx)
with self.assertRaisesRegex(NotImplementedError, "nunique is not defined for MultiIndex"):
psmidx.nunique()
def test_index_has_duplicates(self):
indexes = [("a", "b", "c"), ("a", "a", "c"), (1, 3, 3), (1, 2, 3)]
names = [None, "ks", "ks", None]
has_dup = [False, True, True, False]
for idx, name, expected in zip(indexes, names, has_dup):
pdf = pd.DataFrame({"a": [1, 2, 3]}, index=pd.Index(idx, name=name))
psdf = ps.from_pandas(pdf)
self.assertEqual(psdf.index.has_duplicates, expected)
def test_multiindex_has_duplicates(self):
indexes = [
[list("abc"), list("edf")],
[list("aac"), list("edf")],
[list("aac"), list("eef")],
[[1, 4, 4], [4, 6, 6]],
]
has_dup = [False, False, True, True]
for idx, expected in zip(indexes, has_dup):
pdf = pd.DataFrame({"a": [1, 2, 3]}, index=idx)
psdf = ps.from_pandas(pdf)
self.assertEqual(psdf.index.has_duplicates, expected)
class UniqueTests(
UniqueMixin,
PandasOnSparkTestCase,
SQLTestUtils,
):
pass
if __name__ == "__main__":
from pyspark.pandas.tests.indexes.test_unique import * # noqa: F401
try:
import xmlrunner
testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2)
except ImportError:
testRunner = None
unittest.main(testRunner=testRunner, verbosity=2)