| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| import unittest |
| |
| import pandas as pd |
| |
| from pyspark import pandas as ps |
| from pyspark.testing.pandasutils import PandasOnSparkTestCase |
| from pyspark.pandas.tests.groupby.test_stat import GroupbyStatTestingFuncMixin |
| |
| |
| class FuncTestsMixin(GroupbyStatTestingFuncMixin): |
| @property |
| def pdf(self): |
| return pd.DataFrame( |
| { |
| "A": [1, 2, 1, 2], |
| "B": [3.1, 4.1, 4.1, 3.1], |
| "C": ["a", "b", "b", "a"], |
| "D": [True, False, False, True], |
| } |
| ) |
| |
| @property |
| def psdf(self): |
| return ps.from_pandas(self.pdf) |
| |
| def test_basic_stat_funcs(self): |
| self._test_stat_func( |
| lambda groupby_obj: groupby_obj.var(numeric_only=True), check_exact=False |
| ) |
| |
| pdf, psdf = self.pdf, self.psdf |
| |
| # Unlike pandas', the median in pandas-on-Spark is an approximated median based upon |
| # approximate percentile computation because computing median across a large dataset |
| # is extremely expensive. |
| expected = ps.DataFrame({"B": [3.1, 3.1], "D": [0, 0]}, index=pd.Index([1, 2], name="A")) |
| self.assert_eq( |
| psdf.groupby("A").median().sort_index(), |
| expected, |
| ) |
| self.assert_eq( |
| psdf.groupby("A").median(numeric_only=None).sort_index(), |
| expected, |
| ) |
| self.assert_eq( |
| psdf.groupby("A").median(numeric_only=False).sort_index(), |
| expected, |
| ) |
| self.assert_eq( |
| psdf.groupby("A")["B"].median().sort_index(), |
| expected.B, |
| ) |
| with self.assertRaises(TypeError): |
| psdf.groupby("A")["C"].mean() |
| |
| with self.assertRaisesRegex( |
| TypeError, "Unaccepted data types of aggregation columns; numeric or bool expected." |
| ): |
| psdf.groupby("A")[["C"]].std() |
| |
| with self.assertRaisesRegex( |
| TypeError, "Unaccepted data types of aggregation columns; numeric or bool expected." |
| ): |
| psdf.groupby("A")[["C"]].sem() |
| |
| self.assert_eq( |
| psdf.groupby("A").std().sort_index(), |
| pdf.groupby("A").std(numeric_only=True).sort_index(), |
| check_exact=False, |
| ) |
| self.assert_eq( |
| psdf.groupby("A").sem().sort_index(), |
| pdf.groupby("A").sem(numeric_only=True).sort_index(), |
| check_exact=False, |
| ) |
| |
| self._test_stat_func(lambda groupby_obj: groupby_obj.sum(), check_exact=False) |
| self.assert_eq( |
| psdf.groupby("A").sum().sort_index(), |
| pdf.groupby("A").sum().sort_index(), |
| check_exact=False, |
| ) |
| |
| |
| class FuncTests( |
| FuncTestsMixin, |
| PandasOnSparkTestCase, |
| ): |
| pass |
| |
| |
| if __name__ == "__main__": |
| from pyspark.pandas.tests.groupby.test_stat_func import * # noqa: F401 |
| |
| try: |
| import xmlrunner |
| |
| testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) |
| except ImportError: |
| testRunner = None |
| unittest.main(testRunner=testRunner, verbosity=2) |