blob: 61d8cc5357f69708e6e11bcbf70d5640098cc167 [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import unittest
import numpy as np
import pandas as pd
from pyspark import pandas as ps
from pyspark.testing.pandasutils import PandasOnSparkTestCase
from pyspark.testing.sqlutils import SQLTestUtils
class GroupbyStatTestingFuncMixin:
# TODO: All statistical functions should leverage this utility
def _test_stat_func(self, func, check_exact=True):
pdf, psdf = self.pdf, self.psdf
for p_groupby_obj, ps_groupby_obj in [
# Against DataFrameGroupBy
(pdf.groupby("A"), psdf.groupby("A")),
# Against DataFrameGroupBy with an aggregation column of string type
(pdf.groupby("A")[["C"]], psdf.groupby("A")[["C"]]),
# Against SeriesGroupBy
(pdf.groupby("A")["B"], psdf.groupby("A")["B"]),
]:
self.assert_eq(
func(p_groupby_obj).sort_index(),
func(ps_groupby_obj).sort_index(),
check_exact=check_exact,
)
class GroupbyStatMixin(GroupbyStatTestingFuncMixin):
@property
def pdf(self):
return pd.DataFrame(
{
"A": [1, 2, 1, 2],
"B": [3.1, 4.1, 4.1, 3.1],
"C": ["a", "b", "b", "a"],
"D": [True, False, False, True],
}
)
@property
def psdf(self):
return ps.from_pandas(self.pdf)
def test_mean(self):
self._test_stat_func(lambda groupby_obj: groupby_obj.mean(numeric_only=True))
psdf = self.psdf
with self.assertRaises(TypeError):
psdf.groupby("A")["C"].mean()
def test_min(self):
self._test_stat_func(lambda groupby_obj: groupby_obj.min())
self._test_stat_func(lambda groupby_obj: groupby_obj.min(min_count=2))
self._test_stat_func(lambda groupby_obj: groupby_obj.min(numeric_only=None))
self._test_stat_func(lambda groupby_obj: groupby_obj.min(numeric_only=True))
self._test_stat_func(lambda groupby_obj: groupby_obj.min(numeric_only=True, min_count=2))
def test_max(self):
self._test_stat_func(lambda groupby_obj: groupby_obj.max())
self._test_stat_func(lambda groupby_obj: groupby_obj.max(min_count=2))
self._test_stat_func(lambda groupby_obj: groupby_obj.max(numeric_only=None))
self._test_stat_func(lambda groupby_obj: groupby_obj.max(numeric_only=True))
self._test_stat_func(lambda groupby_obj: groupby_obj.max(numeric_only=True, min_count=2))
def test_sum(self):
pdf = pd.DataFrame(
{
"A": ["a", "a", "b", "a"],
"B": [1, 2, 1, 2],
"C": [-1.5, np.nan, -3.2, 0.1],
}
)
psdf = ps.from_pandas(pdf)
self.assert_eq(pdf.groupby("A").sum().sort_index(), psdf.groupby("A").sum().sort_index())
self.assert_eq(
pdf.groupby("A").sum(min_count=2).sort_index(),
psdf.groupby("A").sum(min_count=2).sort_index(),
)
self.assert_eq(
pdf.groupby("A").sum(min_count=3).sort_index(),
psdf.groupby("A").sum(min_count=3).sort_index(),
)
def test_median(self):
psdf = ps.DataFrame(
{
"a": [1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0],
"b": [2.0, 3.0, 1.0, 4.0, 6.0, 9.0, 8.0, 10.0, 7.0, 5.0],
"c": [3.0, 5.0, 2.0, 5.0, 1.0, 2.0, 6.0, 4.0, 3.0, 6.0],
},
columns=["a", "b", "c"],
index=[7, 2, 4, 1, 3, 4, 9, 10, 5, 6],
)
# DataFrame
expected_result = ps.DataFrame(
{"b": [2.0, 8.0, 7.0], "c": [3.0, 2.0, 4.0]}, index=pd.Index([1.0, 2.0, 3.0], name="a")
)
self.assert_eq(expected_result, psdf.groupby("a").median().sort_index())
# Series
expected_result = ps.Series(
[2.0, 8.0, 7.0], name="b", index=pd.Index([1.0, 2.0, 3.0], name="a")
)
self.assert_eq(expected_result, psdf.groupby("a")["b"].median().sort_index())
with self.assertRaisesRegex(TypeError, "accuracy must be an integer; however"):
psdf.groupby("a").median(accuracy="a")
class GroupbyStatTests(
GroupbyStatMixin,
PandasOnSparkTestCase,
SQLTestUtils,
):
pass
if __name__ == "__main__":
from pyspark.pandas.tests.groupby.test_stat import * # noqa: F401
try:
import xmlrunner
testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2)
except ImportError:
testRunner = None
unittest.main(testRunner=testRunner, verbosity=2)